《Nature,5月13日,Infection of bat and human intestinal organoids by SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-05-14
  • Infection of bat and human intestinal organoids by SARS-CoV-2

    Jie Zhou, Cun Li, Xiaojuan Liu, Man Chun Chiu, Xiaoyu Zhao, Dong Wang, Yuxuan Wei, Andrew Lee, Anna Jinxia Zhang, Hin Chu, Jian-Piao Cai, Cyril Chik-Yan Yip, Ivy Hau-Yee Chan, Kenneth Kak-Yuen Wong, Owen Tak-Yin Tsang, Kwok-Hung Chan, Jasper Fuk-Woo Chan, Kelvin Kai-Wang To, Honglin Chen & Kwok Yung Yuen

    Nature Medicine (2020)

    Abstract

    A novel coronavirus—severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)—emerged in humans in Wuhan, China, in December 2019 and has since disseminated globally1,2. As of April 16, 2020, the confirmed case count of coronavirus disease 2019 (COVID-19) had surpassed 2 million. Based on full-genome sequence analysis, SARS-CoV-2 shows high homology to SARS-related coronaviruses identified in horseshoe bats1,2. Here we show the establishment and characterization of expandable intestinal organoids derived from horseshoe bats of the Rhinolophus sinicus species that can recapitulate bat intestinal epithelium. These bat enteroids are fully susceptible to SARS-CoV-2 infection and sustain robust viral replication. Development of gastrointestinal symptoms in some patients with COVID-19 and detection of viral RNA in fecal specimens suggest that SARS-CoV-2 might cause enteric, in addition to respiratory, infection3,4. Here we demonstrate active replication of SARS-CoV-2 in human intestinal organoids and isolation of infectious virus from the stool specimen of a patient with diarrheal COVID-19. Collectively, we established the first expandable organoid culture system of bat intestinal epithelium and present evidence that SARS-CoV-2 can infect bat intestinal cells. The robust SARS-CoV-2 replication in human intestinal organoids suggests that the human intestinal tract might be a transmission route of SARS-CoV-2.

  • 原文来源:https://www.nature.com/articles/s41591-020-0912-6
相关报告
  • 《Nature,5月4日,A human monoclonal antibody blocking SARS-CoV-2 infection》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-05-05
    • A human monoclonal antibody blocking SARS-CoV-2 infection Chunyan Wang, Wentao Li, Dubravka Drabek, Nisreen M. A. Okba, Rien van Haperen, Albert D. M. E. Osterhaus, Frank J. M. van Kuppeveld, Bart L. Haagmans, Frank Grosveld & Berend-Jan Bosch Nature Communications volume 11, Article number: 2251 (2020) Abstract The emergence of the novel human coronavirus SARS-CoV-2 in Wuhan, China has caused a worldwide epidemic of respiratory disease (COVID-19). Vaccines and targeted therapeutics for treatment of this disease are currently lacking. Here we report a human monoclonal antibody that neutralizes SARS-CoV-2 (and SARS-CoV) in cell culture. This cross-neutralizing antibody targets a communal epitope on these viruses and may offer potential for prevention and treatment of COVID-19.
  • 《Science,5月1日,SARS-CoV-2 productively infects human gut enterocytes》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-03
    • SARS-CoV-2 productively infects human gut enterocytes Mart M. Lamers1,*, Joep Beumer2,*, Jelte van der Vaart2,*, Kèvin Knoops3, Jens Puschhof2, Tim I. Breugem1, Raimond B. G. Ravelli3, J. Paul van Schayck3, Anna Z. Mykytyn1, Hans Q. Duimel3, Elly van Donselaar3, Samra Riesebosch1, Helma J. H. Kuijpers3, Debby Schippers1, Willine J. van de Wetering3, Miranda de Graaf1, Marion Koopmans1, Edwin Cuppen4,5, Peter J. Peters3, Bart L. Haagmans1,†, Hans Clevers2,†,‡ See all authors and affiliations Science 01 May 2020: eabc1669 DOI: 10.1126/science.abc1669 Abstract The virus severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) can cause coronavirus disease 2019 (COVID-19), an influenza-like disease that is primarily thought to infect the lungs with transmission via the respiratory route. However, clinical evidence suggests that the intestine may present another viral target organ. Indeed, the SARS-CoV-2 receptor angiotensin converting enzyme 2 (ACE2) is highly expressed on differentiated enterocytes. In human small intestinal organoids (hSIOs), enterocytes were readily infected by SARS-CoV and SARS-CoV-2 as demonstrated by confocal- and electron-microscopy. Consequently, significant titers of infectious viral particles were detected. mRNA expression analysis revealed strong induction of a generic viral response program. Hence, intestinal epithelium supports SARS-CoV-2 replication, and hSIOs serve as an experimental model for coronavirus infection and biology