《自然资源部第一海洋研究所在棉兰老流年际变异研究方面取得重要突破》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2024-06-16
  • 近日,自然资源部第一海洋研究所物理海洋室海洋与气候动力学(筹)团队在棉兰老流年际变异研究方面取得重要突破。该团队使用船载水文观测资料和锚定潜标数据,结合卫星高度计数据,揭示了棉兰老流流量的年际变化和动力机制。

    棉兰老流是沿菲律宾棉兰老岛东岸向赤道流动的一支强流,对西太平洋暖池和热带气候系统特别是厄尔尼诺/南方涛动(ENSO)现象有着重要影响。历史上,由于缺乏观测,对这只强流的研究较少。已有研究主要基于数值模式,结论与零星的实测结果不符。这一认识不足,制约着热带海洋环流和气候动力学研究的发展。

    国际CLIIVAR计划专门设立西北太平洋海洋环流与气候实验(NPOCE)的研究计划,全力攻克太平洋低纬度西边界流的动力学问题。“十一五”以来,我国持续开展西太环流的调查研究。依据这些资料,对菲律宾以东的海流结构和变异取得了长足的认识,但对于西边界流流量的变化及其动力机制仍缺乏基本认识。

    研究发现,2010-2011年拉尼娜冬季,棉兰老流的流量增加了约5-10Sv。卫星数据和模式实验结果表明,这种年际变化受环绕菲律宾的开尔文波的传播控制。拉尼娜期间,下降的赤道罗斯贝波在棉兰老岛以南海域激发沿岸开尔文波,从苏拉威西-苏禄海进入南海,并沿菲律宾群岛顺时针传播回到西太平洋,引起菲律宾东岸的海平面上升,海平面向东倾斜增加,地转效应导致西边界流出现南向流量异常。厄尔尼诺年的情况则与之相反。以上结论,与过去的模式结果相反,颠覆了传统的认识。

    分析表明,2010/2011年拉尼娜期间,棉兰老流的年际输运异常与整个太平洋内区经向输运的积分相当且同号,说明西边界流年际变异在ENSO期间西太暖池的充放电过程中发挥重要作用。

    棉兰老流离开菲律宾海岸以后,在西边界缺口海域回转向东进入北赤道逆流(NECC),过去关于棉兰老流在缺口海域的路径研究是空白。

    团队分析1993年至2019年的卫星高度计海表地转流,结合潜标观测和卫星水色数据印证,发现棉兰老流在菲律宾以南海域有强烈的季节和年际摆动(Wang et al., 2024):棉兰老流主轴在拉尼娜年倾向于塔劳群岛北部向东回转进入NECC北部,在厄尔尼诺年则异常大弯曲入侵北马鲁古海,再回转与南赤道流交汇并进入NECC南部。棉兰老流路径的年际移动受罗斯贝波的西向传播影响,比尼诺3.4指数超前约2-3个月,可能对ENSO事件的发展有重要影响。

    该系列研究成果,系统揭示了棉兰老流流量的年际变异及其动力机制,强调了其在西太暖池和ENSO变异中的重要作用,较完整地揭示了罗斯贝波的非线性西边界反射,及其控制西太与边缘海交换和西边界流变异的动力学过程,丰富了对海洋环流动力过程的认识,为预测未来ENSO事件和应对气候变化提供了依据。

    该系列工作由自然资源部第一海洋研究所袁东亮团队联合中国科学院南海海洋研究所李博博士共同完成,研究成员还包括中国科学院海洋研究所王坤祥博士生等。论文发表在美国气象学会《物理海洋学报》(Journal of Physical Oceanography)杂志上,袁东亮是论文通讯作者。研究得到了国家重点研发计划项目、国家自然科学基金等项目联合资助。

    论文链接:

    https://doi.org/10.1175/JPO-D-23-0124.1

    https://doi.org/10.1175/JPO-D-23-0125.1

  • 原文来源:https://www.fio.org.cn/news/news-detail-12881.htm
相关报告
  • 《自然资源部第一海洋研究所在南极陆架-海盆热交换研究方面取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-01-28
    • 近日,自然资源部第一海洋研究所海气中心青年学者高立宝博士联合澳大利亚、美国以及国内多位知名科学家,在南极陆架-海盆热量交换研究方面取得重要进展。相关成果以“Persistent warm-eddy transport to Antarctic ice shelves driven by enhanced summer westerlies”为题,发表于国际知名学术期刊《Nature Communications》。 南大洋对减缓全球气候变暖具有至关重要的作用,近20年全球变暖所增加的大部分热量被南大洋吸收。南极陆架-海盆热量交换是南大洋热量再分配的重要方式之一,但南极沿岸的陆坡流就像海洋中的一道动力屏障阻碍着经向的热交换,陆架外的暖水如何突破陆坡流阻碍从而向南极陆架输运热量的物理过程尚未明确。 科研人员基于南极普里兹湾的海洋断面、潜标、海豹CTD和卫星等所获取的观测数据,开展了相关物理过程的研究。研究发现,涡旋入侵是突破陆坡流限制向南极陆架输运热量的重要物理过程,增强的夏季西风及旋度是驱动暖涡入侵的主要影响因子。近几十年,南大洋的西风持续增强和南移,带来的风应力旋度异常有利于触发南极近岸的涡旋形成,同时增强的夏季西风也提高了上层海洋向北的艾克曼输运,使得高温绕极深层水向陆架的涌升增强,从而将暖涡旋跨陆坡输运到普里兹湾内部,并与普里兹湾环流相互作用向冰架输运热量。如果所有暖涡旋携带的热量全部用于冰架融化,将引起普里兹湾埃默里冰架厚度每年减少大约3米,从而增加南极冰架的不稳定性。 该研究揭示了暖涡旋跨陆坡输运的物理过程及其在南极陆架-海盆热量交换中的重要作用。同时进一步基于模式结果预估南大洋的西风将继续增强和南移,这可能会导致更多的暖涡旋向陆架入侵,导致南极冰架快速融化和加剧全球海平面上升。上述科学发现有助于进一步理解南大洋热量再分配过程以及南极海冰和冰架的变化机理,为南极近岸观测计划优化、数值模式发展以及南极气候预测提供了重要理论依据。 自然资源部第一海洋研究所高立宝博士为相关论文第一作者。该研究得到了国家重点研发计划、国家自然科学基金和南大洋调查专项等项目的大力支持。 论文链接:Gao L., Yuan X., Cai W., Guo G., Yu W., Shi J., Qiao F., Wei Z. and G. D. Williams. Persistent warm-eddy transport to Antarctic ice shelves driven by enhanced summer westerlies. Nature Communications 15, 671 (2024). https://doi.org/10.1038/s41467-024-45010-x
  • 《自然资源部第一海洋研究所科研人员在全球高分辨率耦合海洋模式发展方面取得新突破》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-04-02
    • 水平分辨率和物理过程表达的精确性是决定全球海洋模式模拟结果真实性的两个最重要的因素。按照自然资源部第一海洋研究所数值模式“运行一代、研制一代、策划一代”的总体思路,物理海洋室肖斌工程师与团队成员密切协作,突破系列关键技术瓶颈,将自然资源部第一海洋研究所全球高分辨率海洋模式水平分辨率由1/10°提升至1/32°,并实现了全球海浪-潮流-环流耦合。新的模式命名为全球1/32°海浪-潮流-环流耦合海洋模式(FIO-COM32)。这为下一代业务化预报系统建设打下了坚实的基础。论文2023年3月28日发表于国际高端期刊《Geoscientific Model Development》(https://doi.org/10.5194/gmd-16-1755-2023),乔方利研究员为通讯作者。 首先,随着分辨率由1/10°提升至1/32°,模式的计算量和内存开销将分别增加约32倍和10倍,对模式研发与运行提出了巨大的技术挑战。该课题组通过设计四级并行框架,突破了高效并行计算技术瓶颈;通过IO二次剖分和多进程归集,突破了IO技术瓶颈。 模式分辨率的提升对地形岸线的解析、涡旋现象的模拟等都有本质性改进。新的高分辨率模式能够模拟更丰富的海洋涡旋现象,显著改进了模式对涡动能的模拟能力,尤其在黑潮和湾流等西边界强流区域,所模拟的强流路径与形态均有较大提升,涡动能的均方根误差随之大幅降低。 其次,即使分辨率提升至全球1/32°,夏季上层海洋混合不足的问题依然存在,图中显示模式与Argo观测的夏季混合层深度存在显著的偏浅问题,这是国内外海洋环流模式的共性问题。基于本研究组原创的浪致混合理论,将浪致混合方案Bv引入到新模式,显著改进了夏季混合层深度模拟,首次实现了高分辨率海浪-潮流-环流的耦合。 以往国内外超高分辨率海洋模式与卫星观测的海面高度数据对比显示,两者的中尺度波数谱斜率存在明显差异,这是一个困扰了物理海洋学领域多年的科学难题。基于建立的新型模式,该课题组首次在全球尺度科学阐释了该差异是由于海洋环流模式中未引入潮流而引起的。通过引入天体引潮力实现潮流-环流耦合,全球模式中激发的内潮和惯性重力波所致的海面起伏显著改进了模式的中尺度波数谱斜率。在乔方利研究员带领下,经过几十年的不断探索,该研究组打破了国内外海浪、潮流、环流分治的传动动力学框架,在国际上首次提出海浪、潮流、环流等多运动形态耦合建模的学术思想。该论文清晰表明,耦合建模是未来海洋模式发展的正确道路。 在联合国“海洋十年”框架下,乔方利联合欧美等25个国家34家海洋研究机构和3个国际组织,于2022年发起了“海洋与气候无缝预测(OSF)”大科学计划。该论文的发表标志着OSF又迈上了一个新台阶。