《广州健康院在染色质高级结构调控细胞命运机制研究取得进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-04-06
  • 真核生物基因组DNA缠绕在组蛋白八聚体上形成染色质,并在染色质架构蛋白的作用下逐级折叠形成远距离的染色质相互作用(或染色质环)、拓扑相关结构域和染色质区室等染色质高级结构。远距离染色质互作可以调控基因表达,在细胞命运决定过程中发挥重要作用。CCCTC结合因子(简称:CTCF)最早被认为是绝缘子结合蛋白,随后发现CTCF在转录激活/抑制、基因印记、X染色体失活等方面均发挥重要的调控作用。近年来,CTCF也被认为是染色质架构蛋白,与Cohesin复合物等在调控远距离染色质相互作用和维持染色质“成环”等方面发挥重要作用。然而,CTCF是否在同一生物学过程中发挥其多重功能至今仍不清楚。

      北京时间4月5日,中国科学院广州生物医药与健康研究院姚红杰研究员课题组联合美国加州大学圣地亚哥分校付向东教授课题组在Cell Reports上发表了题为CTCF functions as an insulator for somatic genes and a chromatin remodeler for pluripotency genes during reprogramming的研究论文。该研究运用体细胞重编程到诱导多能干细胞为模型结合多维组学技术并联合生物信息分析,揭示了CTCF介导的染色质绝缘和染色质结构变化协同调控干细胞多能性获得的新机制。

      研究人员发现CTCF在体细胞重编程过程中表达逐渐升高,并发挥促进体细胞重编程为诱导多能干细胞的作用。在此过程中,CTCF具有同时抑制体细胞相关基因表达和促进多能性基因网络激活的双重功能。机制分析发现CTCF不仅通过发挥染色质绝缘功能抑制体细胞相关基因的表达,而且发现CTCF具有维持多能性基因染色质开放的作用,CTCF还结合在部分多能性基因启动子区,促进这些多能性基因增强子(Enhancer)和启动子(Promoter)之间的相互作用(EP互作)。此外,该研究还揭示CTCF与染色质重塑因子SMARCA5形成蛋白复合物,有助于维持多能性基因的染色质开放和多能性转录因子的结合,促进多能性基因网络的激活。 

      该研究揭示了在体细胞重编程为诱导多能干细胞过程中,CTCF发挥了介导染色质绝缘和染色质重塑的协同调控作用。这一研究成果进一步完善了CTCF的生物学功能,并为后续研究细胞命运决定的调控机理提供了新思路。

      姚红杰研究员和付向东教授为文章的共同通讯作者。姚红杰研究员课题组的宋亚威博士、博士研究生章杰、副研究员胡功成博士以及加州大学圣地亚哥分校付向东教授课题组的博士后梁征宇博士为该文章的并列第一作者。宋亚威博士和博士生章杰主要完成实验部分,梁征宇博士和胡功成博士主要完成生物信息分析部分。该研究工作得到国家相关人才计划、国家重点研发计划、国家自然科学基金联合基金重点项目和中国科学院战略性先导科技专项等项目的资助。

  • 原文来源:http://www.gibh.cas.cn/xwdt/kydt/202204/t20220406_6419063.html;https://secure.jbs.elsevierhealth.com/action/getSharedSiteSession?redirect=https%3A%2F%2Fwww.cell.com%2Fcell-reports%2Fretrieve%2Fpii%2FS2211124722003746%3F_returnURL%3Dhttps%253A%252F%252Flinkinghub.elsevier.com%252Fretrieve%252Fpii%252FS2211124722003746%253Fshowall%253Dtrue&rc=0
相关报告
  • 《广州健康院在干细胞扩展潜能表观遗传调控机制方面取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-04-19
    • 干细胞全能性对理解哺乳动物早期胚胎发育及再生医学应用至关重要。然而,传统胚胎干细胞(Embryonic stem cells,简称为ES细胞)向胚外组织发育的潜能有限,不具备全能性,在模拟早期胚胎发育及再生医学应用等方面具有局限性。北京大学邓宏魁教授团队和香港大学刘澎涛教授团队于2017年报道了通过小分子化合物将传统ES细胞诱导成为兼具胚内及胚外发育潜能的类全能性干细胞,并将其命名为扩展潜能干细胞(Extended pluripotent stem cells 或Expanded potential stem cells,简称为EPS细胞)。EPS细胞为组织再生提供了重要的种子细胞,具有重要的应用价值。然而,调控EPS细胞扩展潜能性的分子机制仍不清楚。   北京时间4月16日,中国科学院广州生物医药与健康研究院姚红杰研究员课题组在《核酸研究》(Nucleic acids research)上以“突破性研究论文”(Breakthrough Article)形式在线发表了题为YY1 safeguard multidimensional epigenetic landscape associated with extended pluripotency的研究论文。该研究揭示了阴阳因子YY1调控干细胞扩展潜能性的表观遗传新机制。   研究人员绘制了ES细胞和EPS细胞的染色质开放图谱,发现YY1显著富集在EPS细胞染色质特异开放区域,暗示其对EPS细胞具有潜在的调控作用。研究人员发现YY1可以通过介导(Enhancer)与启动子(Promoter)的相互作用维持EPS细胞特异基因的表达,包括Dnmt3l及Epas1等与胎盘发育相关基因。研究人员进一步揭示敲降Yy1使DNA甲基化相关因子DNMT3A,DNMT3B及DNMT3L的表达下调,进而导致EPS细胞的全基因组甲基化水平显著降低。随后,研究人员发现DNA甲基化水平的减弱促进了DNA敏感结合蛋白CCCTC结合因子(简称CTCF)在这些区域的结合,并使CTCF在组蛋白H3K4me3去甲基化酶5C(Kdm5c)和组蛋白去乙酰酶6(Hdac6)基因上介导的EP相互作用增强,促进Kdm5c和Hdac6的表达,并导致EPS细胞特异基因启动子区域H3K4me3和H3K27ac的富集水平显著减弱。同时,研究人员发现敲降Yy1导致EPS细胞的基因表达模式接近于ES细胞,而过表达Yy1使部分EPS特异基因在ES细胞中表达。为了探究YY1是否可以调控EPS细胞的胚外发育潜能,研究人员进一步利用体外胚外细胞分化系统结合单细胞转录组测序技术,发现敲降Yy1使EPS细胞向胚外内胚层(Extra-embryonic endoderm,XEN)样细胞的衍生能力减弱,揭示YY1是EPS细胞维持胚外发育潜能所必需的因子。   该研究揭示了YY1在调节表观遗传crosstalk中发挥着极其重要的作用,并阐明YY1通过调控DNA甲基化和组蛋白修饰的二维层面和染色质高级结构的三维层面,进而调控EPS细胞的特性和分化潜能。   姚红杰研究员课题组的董晓涛博士及博士研究生郭蓉为该文章的并列第一作者。姚红杰研究员为该文章的通讯作者。该研究得到了北京大学邓宏魁教授和徐君研究员的大力帮助。该研究成果得到了国家重点研发计划、国家相关人才计划、国家自然科学基金联合基金重点项目和中国科学院战略性先导科技专项等项目的资助。
  • 《广州健康院发现RNA调控染色质的新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-04
    • 近日,中国科学院广州生物医药与健康研究院陈捷凯课题组研究发现RNA m6A修饰调控异染色质形成的新机制,阐明RNA m6A阅读器YTHDC1在这一机制中的关键作用:抑制基因组中广泛分布的ERVK、IAP、LINE1等转座元件,限制胚胎干细胞向全能性干细胞转化,相关研究论文以The RNA m6A reader YTHDC1 silences retrotransposons and guards ES cell identity为题于北京时间3月4日发表在Nature上。   RNA上的N6-腺苷酸甲基化(m6A)是mRNA上最丰富的RNA修饰,YTH结构域是已知的能够特异性识别m6A的结构域,因此RNA m6A可通过被含YTH结构域的阅读器蛋白(reader)识别进而参与各种生物学功能。通过基因敲除实验科学家发现,m6A催化酶METTL3敲除的小鼠在E8.5前就胚胎致死,而大部分m6A阅读器基因的敲除并不导致胚胎致死,包括三个分布在细胞质中主要参与mRNA调控的YTH基因(Ythdf1-3),只有分布在细胞核中的Ythdc1敲除后会出现早期的胚胎致死,提示m6A可能具有与YTHDC1有关的其他尚不清楚的重要生物学功能。   由于文献中至今尚未报道能够建立Ythdc1敲除的胚胎干细胞系,陈捷凯课题组运用条件敲除策略,针对编码YTH结构域重要部分的Ythdc1外显子7-9进行条件性敲除,发现敲除后细胞增殖能力迅速下降,基因表达谱出现2C-like(2C指受精卵卵裂后的二细胞期,小鼠在这一阶段启动合子基因组激活)的特征基因激活和逆转录转座元件激活。胚胎干细胞属于多能性干细胞,在小鼠胚胎发育中与囊胚内细胞团(ICM)的发育阶段相近,而2C-like细胞则具备全能性,多能性干细胞在培养中会随机出现少量的2C-like细胞,这一多能性-全能性的转变过程是近年来干细胞领域的研究热点,科学家希望通过了解其机制,发现维持全能性的可能方法。此前科学家曾发现RNA m6A调控胚胎干细胞退出多能性,这一工作进一步发现RNA m6A在全能性-多能性转变中的调控作用。     课题组在之前的工作中曾发现H3K9me3催化酶SETDB1在体细胞重编程、转座元件抑制、全能性-多能性转化中的重要作用(Nature Genetics 2013,Cell Reports 2020),因为表型一致,他们进一步研究RNA m6A是否参与了SETDB1-H3K9me3的调控。     遗传物质以染色质的形式存在,其中活跃转录的部分为常染色质,致密的异染色质代表被沉默的遗传信息。组蛋白H3K9me3是异染色质的重要修饰,也是细胞命运决定的重要机制。在小鼠胚胎干细胞(mES细胞)中,除了组成型异染色质(着丝粒、端粒等),H3K9me3主要标记遍布基因组的逆转录转座子(Retrotransposons)上并沉默这些区域。逆转录转座子上的H3K9me3由SETDB1负责催化,敲除SETDB1会导致这些元件重激活并使胚胎干细胞转化为具有全能性特征的、类似2细胞期的细胞(2C-like细胞)。但SETDB1是如何特异性地被募集到逆转录转座子区域的?目前有一些机制研究揭示,哺乳动物进化过程中会通过含KRAB结构域的锌指蛋白的进化来特异性沉默一部分转座元件(KRAB结构域会通过KAP1招募SETDB1),但这个机制并不覆盖所有各种类型的转座元件,提示还存在未发现的机制。   科研人员发现,YTHDC1能够直接结合转座子元件(TE)所转录出来的RNA上的m6A修饰,并招募SETDB1到相应的染色质位置,催化转座元件上的H3K9me3、形成异染色质并使这些转座元件沉默。敲除Ythdc1,会导致Setdb1依赖性的H3K9me3信号大幅度下降,证明YTHDC1是SETDB1介导逆转录转座子沉默的重要机制环节,也揭示RNA m6A调控染色质的功能。