《深圳先进院等首次实现基于机械敏感性离子通道的超声神经调控》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-08-01
  •         近日,中国科学院深圳先进研究院郑海荣课题组和浙江大学医学院李月舟课题组合作,在Nano Letters期刊发表了题为Ultrasonic control of neural activity through activation of mechanosensitive channel MscL的研究论文。该项研究将超声辐射力和机械敏感性离子通道结合起来,首次在神经元上通过超声刺激激活机械敏感性离子通道,并进而精确控制神经元的兴奋性。该成果开拓了超声在脑科学研究中的新方向,为超声遗传学技术的进一步发展奠定了基础,具有重要的理论意义和应用价值。

      近年来兴起的光遗传学技术,被称为是21世纪神经科学领域最引人注目的革新,在猴、鼠、果蝇、线虫等模式生物中得到广泛应用。其主要原理是采用基因操作技术将细菌的光敏感蛋白转入到特定类型的神经元中进行表达,并通过不同波长的光照刺激光敏感蛋白,从而造成细胞膜两边的膜电位发生变化,达到对细胞选择性地兴奋或者抑制的目的。但是在哺乳动物中,光遗传学技术需要通过颅骨手术将特定波长的光线引入脑中,这种创伤性为其在活体的应用带来一定的局限。因此,越来越多的研究人员将目光转向无损伤的方法,比如通过超声,可以无损伤的穿透深入大脑或其他组织内部,并且可以通过聚焦获得精确定位。

      由于细胞对超声的响应能力有限,为了达到通过超声精确控制神经元的目的,需要找到一种介质既可以很好的响应超声刺激,又可以在神经元表达并赋予神经元灵敏的超声敏感性。考虑到超声的机械效应,机械敏感性离子通道是一个很好的选择。机械敏感性离子通道是近年来发现的一种新型离子通道,有别于传统的电压敏感,以及配体门控类型的离子通道,它感受细胞形变等方式导致的膜张力的变化而开放,引起细胞内外离子的跨膜运输,参与介导众多的生命活动,其功能愈来愈受到重视。浙江大学医学院李月舟课题组长期以来致力机械敏感性离子通道开放机制和功能,深圳先进研究院郑海荣课题组掌握了独特的超声辐射力神经调控技术,在超声神经调控仪器研制方面积累了丰富的经验,两者的合作促成了该项研究。

      实验中,课题组选择了来自细菌的机械敏感性离子通道MscL。MscL具有作为纳米开关的天然优势。它结构简单,只有136个氨基酸,容易在真核生物表达;它自身可以直接被膜张力所激活,并且不需要其它成分的参与;它开放形成30埃左右的巨大孔径,通透效率高;它不和其它蛋白相互作用,不会干扰细胞的其它功能。课题组首先构建了重组MscL基因的病毒,然后通过病毒感染在原代培养的大鼠神经元中表达MscL通道。结果表明MscL可以在神经元上功能性表达,并对机械刺激保持敏感(图2)。

      在基金委重大科研仪器支持下,中国科学院深圳先进院郑海荣课题组设计开发了一系列跨尺度超声神经调控工具(图3)。超声辐射力神经刺激芯设计基于不同主频叉指换能器指条宽度,形状,对数和声孔径尺寸,通过标准微纳加工技术光刻,溅射叉指换能器电极,制备微型声场可调超声神经刺激芯片,产生高强度局域声场及超声辐射力可有效作用于神经元细胞。该芯片可与钙成像、膜片钳等生物学手段相兼容,实时监测超声诱发的生物效应,为超声神经调控治疗神经类疾病提供基础和理论依据。同时研制的动物超声神经刺激系统可对深部脑核团和神经环路开展无创、动态和网络式的神经刺激与调控。该技术和工具的研制可在脑疾病的研究、神经科学基础研究及其相关领域科学广泛应用。该研究结果为后续的活体超声遗传学奠定了基础,并有望通过进一步开发的多面阵、多焦点的深部脑刺激超声调控仪器解析神经环路,并对帕金森症、抑郁症等脑疾病提供新的研究,甚至是治疗的有效新工具。

      浙江大学医学院的博士生叶佳、唐思阳,以及深圳先进院的孟龙副研究员是本文的第一作者,郑海荣和李月舟是本文的通讯作者。参与该工作的还有浙江大学医学院的段树民院士、胡海岚教授、李相尧教授,浙江大学附属儿童医院舒强院长、江米足教授、尚世强教授,深圳先进研究院的牛丽丽副研究员、邱维宝研究员。该研究得到国家自然科学基金(81527901,11534013,31270878)、科技部973计划(2014CB910302)等项目的资助。

相关报告
  • 《深圳先进院在超声神经调控领域取得重要进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-16
    •         近日,中国科学院深圳先进技术研究院医工所郑海荣团队在超声神经调控方面取得新进展,相关研究On-Chip Ultrasound Modulation of Pyramidal Neuronal Activity in Hippocampal Slices发表在Advanced Biosystems杂志上,并被选为封面文章(Outside Front Cover)。    近些年,超声神经调控作为新型无创的神经调控技术得到广泛关注,有望为神经精神疾病的干预治疗提供新的临床解决方案。郑海荣团队针对神经元、秀丽隐杆线虫、啮齿动物、非灵长类动物的超声调控内在机制及干预治疗开展了全面的研究并研制多种跨尺度超声神经调控仪器。   超声神经调控的内在机制尚不清楚,同时由于传统超声探头体积大,与电生理及钙成像系统兼容性差,进一步限制了超声神经调控机制的研究。研究人员设计利用自主研发的新型超声神经刺激芯片,建立了兼容离体脑片膜片钳记录的实验系统,并以离体海马脑片作为研究对象。研究结果表明,在超声作用下,海马椎体神经元能被超声激活产生动作电位,并随着超声强度的增加,动作电位发放频率相应提高。同时,超声刺激的机械效应能直接增强神经元钠离子内流,从而显著提高神经元兴奋性。另外,超声刺激改变了钠通道生物动力学特性从而提高通道开放效率。在通道激活过程中,超声刺激显著降低通道激活阈值;在通道失活过程中,超声刺激显著加快通道失活速率;在通道恢复过程中,超声刺激显著降低通道回复时间。   本工作的意义在于研发了新型的超声神经调控芯片,利用膜片钳记录手段系统地研究了超声刺激在单一神经元及离子通道水平的调控效应,为超声神经调控机制研究的进一步研究提供了新的思路和强有力的工具,为最终服务于临床奠定基础 。   上述研究工作得到国家自然科学基金委国家重大科研仪器研制项目、国家自然科学基金面上项目,广东省相关人才计划项目以及深圳市学科布局等多个项目支持。
  • 《深圳先进院在超声神经调控领域获进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-20
    •        近日,中国科学院深圳先进技术研究院研究员郑海荣团队在超声神经调控领域获得新进展,脑神经调控和视网膜神经调控等工作成果在IEEE Transactions系列刊物上发表。   团队在领域内率先开展了对自由活动小鼠的超声神经调控研究。相关工作Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice(《自由移动小鼠的无创超声神经调控研究》)发表于生物医学工程专业期刊IEEE Transactions on Biomedical Engineering(IEEE生物医学工程会刊,DOI:10.1109/TBME.2018.2821201)。   团队针对超声神经调控技术在清醒啮齿类实验动物上的应用需求,研制了体积小、重量轻的头戴式超声刺激装置。该装置不仅能满足清醒小动物对头戴装置体积、重量的苛刻要求,而且能附加安装电生理采集电极、给药导管和光纤等附件,实现超声神经调控与电生理、给药、光刺激和钙成像等多模态神经调控、评估手段的充分融合,促进超声神经调控技术在癫痫、抑郁症、帕金森病、药物成瘾以及睡眠功能障碍等疾病研究领域的应用。该研究研制了不同规格的头戴式超声刺激器,并首次成功实现对自由活动小鼠转头行为的超声调控。该研究成果为拓展超声神经调控技术在探索超声作用机制和干预脑疾病等研究领域的应用提供新工具(图1)。   同时,团队在视网膜超声刺激研究方面也取得新进展。相关工作Temporal Neuromodulation of Retinal Ganglion Cells by Low-frequency Focused Ultrasound Stimulation(《低频聚焦超声刺激视网膜神经节细胞的时间神经调控研究》)发表在IEEE Transactions on Neural Systems & Rehabilitation Engineering (IEEE神经系统与康复工程会刊,DOI: 10.1109/TNSRE.2018.2821194)杂志上。   视网膜退行性疾病包括视网膜色素变性和老年性黄斑病变,主要表现为光感受器的凋亡进而导致视觉信号输入受阻。近年来,植入式视觉假体在治疗神经性失明方面取得了重大进展。然而,植入式医疗器械具有很高的侵入性,存在许多安全性、有效性和成本问题。超声作为一种新型神经调控手段,具有无创调控的优点,在视网膜假体研究领域获得了高度关注。   深圳先进院超声团队首次采用频率为2.25 MHz的低频聚焦超声开展了刺激大鼠离体视网膜的研究。研究发现低频聚焦超声可有效地诱发视网膜神经节细胞产生不同类型的反应,并比较了不同超声强度下视网膜神经节细胞的时间响应特性,该研究结果将推动无创超声视网膜假体的实现(图2)。   上述研究工作得到了国家自然科学基金委国家重大科研仪器研制项目、广东省创新团队以及深圳市孔雀团队等项目支持。