《二硫化钼垂直晶体管——沟道长度低至一个原子层》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2021-06-11
  • 垂直晶体管的沟道长度取决于半导体厚度,该晶体管对于新一代电子设备的开发非常具有有价值。传统的平面晶体管是分层构建的,并且所有连接都在同一平面上,与传统的平面晶体管不同,垂直晶体管可能更便宜,且更容易制造。

    到目前为止,创建具有短沟道长度的垂直器件仍然具有很高的挑战性,这主要是由于高能金属化工艺会对接触区造成损坏。因此,确定突破短沟道垂直晶体管制造技术是实现这些器件大规模生产的关键步骤。

    中国湖南大学的研究人员宣布,使用一种低能量范德华金属集成技术制造出了具有短沟道长度的二硫化钼 (MoS2) 垂直晶体管。发表在 Nature Electronics上的一篇论文中概述了这种技术,使用该技术能够创建通道长度低至一个原子层的垂直晶体管。

    研究人员在论文中写道:“我们已经证明可以使用低能范德华金属集成技术来创建沟道长度低至一个原子层的二硫化钼 (MoS2) 垂直晶体管。该方法使用机械层压并转移到 MoS2/石墨烯垂直异质结构顶部的预制金属电极,导致垂直场效应晶体管的开关比分别为26和103,沟道长度分别为0.65 nm 和3.60 nm。”

    湖南大学的研究人员在一系列测试和实验中评估了该垂直场效应晶体管的性能,并且使用了扫描隧道显微镜技术,在低温下收集了电测量值。利用扫描隧道显微镜和低温电学测量结果,证明了电性能的改善是高质量金属-半导体界面的结果,这种界面具有最小化的直接隧道电流和费米能级钉扎效应。

    在初步评估中,基于 MoS2 的垂直晶体管取得了非常有希望的结果。与之前的具有短沟道长度的垂直器件相比,表现出明显更好的电气性能。

    这组研究人员开发的新型垂直晶体管最终可以制造具有更短栅极长度的新型电子器件。该金属集成技术也可以被其他团队用来创建具有不同沟道长度的类似垂直晶体管。

    此外,最近论文中提出的集成方法还可以应用于其他层状材料,例如二硒化钨和二硫化钨,这将使其他亚3纳米p 型和 n 型垂直晶体管的制造成为可能。

相关报告
  • 《二硫化钼摩擦离子电子学晶体管研究获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-04
    • 两种不同材料接触分离可产生静电荷并引发一个摩擦静电场,该摩擦电场可以驱动自由电子在外部负载流通,得到脉冲输出信号。一方面,摩擦纳米发电机 (TENG) 就是利用了这种脉冲信号实现了将外部环境机械能转换成电能,近期在许多领域实现了许多突破性进展,包括从多种机械运动获取能源、自驱动机械感应系统、高灵敏质谱分析以及常压下机械触发的等离子体等。另一方面,当 TENG 产生的静电场与电容性器件耦合时 ( 例如,场效应晶体管 ) ,半导体沟道中载流子的传输特性可以被摩擦电势有效调制,也就是摩擦电子学晶体管( tribotronic transistor )。为了开发更高性能主动式摩擦电子学晶体管,针对 TENG 与半导体器件耦合的基础物性研究和相关工艺工程迫切地需要更深入的探索。利用双栅结构电容耦合,使二硫化钼 (MoS 2 ) 摩擦电子学晶体管电流开关比超过六个数量级 (10 6 ) 。平面设计以及利用直接接触模式,同样简化了石墨烯摩擦电子学机械传感器件。然而,鉴于之前复杂的加工工艺和较为普通的电学性能,摩擦电子学仍有巨大的研究空间。 近日,中国科学院北京纳米能源与系统研究所孙其君和王中林研究团队基于摩擦电子学的原理,制备了一种新型的二硫化钼摩擦离子电子学晶体管 (triboiontronic transistor) ,该器件通过工作在接触分离模式下的 TENG 产生的摩擦电势与离子调控的二硫化钼晶体管耦合,连接了摩擦电势调制特性以及离子调控的半导体特性。摩擦电势在离子凝胶和二硫化钼半导体界面处可诱导形成超高的双电层电容,可高效率调制沟道中载流子传输性能。不需要额外栅压,二硫化钼摩擦离子电子学晶体管可主动式操控,器件表现低的阈值 (75 um) 和陡峭的开关特性 (20 um/dec) 。通过预设耦合与晶体管的摩擦电势的初始值,摩擦离子电子学晶体管可以操作在两个工作模式下,增强模式和耗尽模式,实现更高的电流开关比 (10 7 ) 以及超低的关态电流 (0.1 pA) 。文章展示了二硫化钼摩擦离子电子学反相器,反相器对应增益 (8.3 V/mm) ,并且具有较低的功耗以及优异的稳定性。这项工作展现了一个通过外部机械指令来高效率调制二维材料半导体器件以及逻辑电路的低功耗主动式以及普适的方法,在人机交互、电子皮肤、智能传感以及其他可穿戴器件等领域有巨大的应用前景。该研究成果以 Triboiontronic Transistor of MoS 2 为题发表于近期的《先进材料》( Adv. Mater ., DOI: 10.1002/adma.201806905)上 。 图: (a-c) 二硫化钼摩擦离子电子学晶体管的工作机制以及三个状态下的能带示意图 ( 增强模式,平带,耗尽模式 ) ; (d) 两个工作模式下的二硫化钼摩擦离子电子学晶体管输出特性曲线以及对应的转移特性曲线; (e) 电流开关比超过七个数量级; (f) 对应肖特基势垒高度随摩擦距离的变化,插图是对应能带解释; (g-i) 二硫化钼摩擦离子电子学晶体管实时测试性能。
  • 《复旦大学科研团队利用原子晶体硫化钼发明新的单晶体管逻辑结构》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-05-31
    • 复旦大学科研团队近日在集成电路基础研究领域取得一项突破。他们发明了让单晶体管“一个人干两个人的活”的新逻辑结构,使晶体管面积缩小50%,存储计算的同步性也进一步提升。如果成功产业化,将推动集成电路向更轻、更快、更小、功耗更低方向发展。相关研究成果已在线发表于《自然·纳米技术》。 “这项研究工作的核心内容是利用原子晶体硫化钼做出了新结构晶体管。在此基础上,团队发明了新的单晶体管逻辑结构,在单晶体管上实现了逻辑运算的‘与’和‘或’。”复旦大学微电子学院教授周鹏说。 “与”和“或”是构成计算系统的最基本逻辑单元。该研究工作使晶体管面积缩小50%,有效降低了成本,而原先需要两个独立晶体管才能实现逻辑功能,现在只要一个晶体管即可。研究还发现了可层数调控的晶体管逻辑特性,并提供光切换逻辑功能选项。 据介绍,这一新的逻辑架构可以通过器件级存算一体路径破解数据传输阻塞瓶颈问题,突破了现有逻辑系统中冯·诺依曼架构的限制。对此,周鹏打了个比方:“原先我们计算和存储数据需要两个房间跑,而现在所有数据的计算和存储都在同一个房间解决。” 在冯·诺依曼架构下,计算和存储是相互分离的。“可以理解为,房间A专门用来计算数据,房间B用来存储数据,数据在经过计算后要通过电子借由导线从房间A传输到房间B,这条导线就相当于连接两个房间的走廊。”周鹏表示,如今,数据的计算速度越来越快,但存储速度和传输速度却未能得到同步提升,冯·诺依曼架构的限制就主要体现在计算速度、存储速度和传输速度的不相匹配。 而复旦科研团队的研究则在物理架构上突破了冯·诺依曼架构的限制,只需“一个房间”就可实现计算和存储的功能,即“房间”内分层工作,第一层负责计算,第二层负责存储,两个表层在垂直空间上形成堆叠。 “就像两张纸摞在一起,它们在空间上是堆叠着的,数据的计算和存储只是在原地被相对抬高了一些而已。计算层的沟道电流可以影响到存储层,从而摆脱传输环节,实现存算一体、原位存储。”周鹏说。 据介绍,单晶体管逻辑结构研究如果得以继续推进,应用于规模化生产,将推动集成电路往更轻、更快、更小、功耗更低的方向发展。