《全球土壤地图网站》

相关报告
  • 《Nature: 全球土壤PH地图》

    • 来源专题:土壤、生物与环境
    • 编译者:李卫民
    • 发布时间:2016-12-15
    • For some time now, scientists have known that climate influences soil chemistry -- and, in particular, soil pH, a measure of acidity or alkalinity. In dry climates, soil is alkaline; in wet climates, it's acidic. But what has remained unknown is just how soil pH changes between wet and dry climates. A new analysis by UC Santa Barbara researchers sheds light on that mystery, revealing that the shift occurs abruptly, right at the boundary between wet and dry conditions. The findings appear in the journal Nature. "We found that if you go to wet climates -- places where you might expect to find a forest, whether in the high latitudes or in the Amazon -- the pH is acidic," said lead author Eric Slessarev, a Ph.D. student in the Department of Ecology, Evolution and Marine Biology at UCSB. "If you go to dry climates, the pH is alkaline. This is what we expected. But our analysis was able to confirm that the transition between those two zones is very abrupt. "It only takes a small change in climate to achieve the switch from that acid zone to the alkaline zone and there are fewer soils with an intermediate pH," Slessarev added. "Those soils are in places like Iowa or the Ukraine, which -- not coincidentally -- are places intensively farmed because those neutral range soils are the most fertile. Extreme pH tends to be bad for crops for a variety of reasons." Soil pH levels range from 0 to 14, with 7 being neutral. Levels below 7 are acidic, and those above are alkaline. Neutral soils are less common than either extreme and tend to cluster at the transition between wet climates and dry climates. The research team conducted a meta-analysis using soil databases from the United States, China, Canada, Australia, Brazil and the International Soil Research Information Center in Wageningen, Netherlands. The team evaluated approximately 60,000 data points to build a global soil pH map. "One thing that we can draw from our analysis is that the parts of the world that humans depend upon the most for agriculture sit on an edge between wet and dry climates and between acid soils and alkaline soils," Slessarev said. "What's more, our work demonstrates that soil pH -- and therefore soil fertility -- is tightly linked to climate. In fact, it's linked in a way that looks like a staircase, where a step exists between one space and another. For the parts of the world on the edge of that step, this means a very small change in climate could make a big difference in how the system functions."
  • 《美研究人员绘制水下土壤地图》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2019-03-15
    • 整个地球表面的土壤都经过严格的测试和管理。但是在水底深处的土壤呢?水下土壤虽然不是传统土壤,但具有一定的价值和作用。美国罗得岛大学的马克·斯托特和他的团队正在对水下土壤进行采样并绘制地图。 考虑到近一半的美国人口生活在沿海地区,这些土壤影响到他们生活的很多方面,与商业、娱乐和交通活动有关。土壤地图提供了一种管理这些区域的机制,并提出了这些土壤的基本使用和管理决策。水下土壤受人类活动的影响,如疏浚、水产养殖和恢复,所有这些都会影响水质。在疏浚过程中,为了腾出空间(例如,为了让船的底部通过),需要清除水下土层,这些土壤需要转移到别的地方,如果放在陆地上,其影响可能是未知的。 水产养殖利用水下栖息地养殖水生植物(如nori)或动物(如牡蛎)。在传统农业中,农民通常关心他们的土壤状况。然而,对水下土壤的了解却很少,还不确定什么样的土壤对水产养殖有利或不利。 斯托特补充认为,水下土壤也面临着陆地活动的一些威胁。例如,如果在一块田里施肥太多,这些肥料会进入附近的水体,这促进了藻类的生长。当藻类死亡和分解时,水体以及水下土壤会失去鱼和植物所需的氧气。 这些土壤是无数生境和生态系统的基础和结构。例如,很多水生植物是从水下土壤中获取大量营养的根植植物。它们能截留沉积物,减少海岸侵蚀。它们是一个巨大的二氧化碳库,最终储存在土壤中,和其他植物一样,它们会增加氧气。更不用说为生活在里面的动物提供栖息地。其重要性在不断增加。 通过对土壤的测量,研究人员能够将数据添加到国家土壤合作调查地图中。这为土壤提供了统一和严格的评估,并在全国范围内使用。斯托特认为,土壤科学家需要发展更快更好的方法来创建这些地图。 斯托特和他的团队已经为水下土壤添加了新的分类。这些分类列出了土壤的性质,并提供了有关其形成方式以及如何使用和管理的信息。 他还提到,关于水下土壤,还有很多东西需要学习,但他们的一些经验表明,这些土壤具有很强的适应性。例如,他们测试了长期高产牡蛎养殖(长达20年)是否会对水下土壤产生负面影响。尽管有一些负面影响,但在这一特定区域,土壤基本上保持不变。斯托特和他的团队继续绘制水下土壤的地图,以帮助定义和理解它们的价值。 (王琳 编译)