《全球土壤地图网站》

相关报告
  • 《Nature: 全球土壤PH地图》

    • 来源专题:土壤、生物与环境
    • 编译者:李卫民
    • 发布时间:2016-12-15
    • For some time now, scientists have known that climate influences soil chemistry -- and, in particular, soil pH, a measure of acidity or alkalinity. In dry climates, soil is alkaline; in wet climates, it's acidic. But what has remained unknown is just how soil pH changes between wet and dry climates. A new analysis by UC Santa Barbara researchers sheds light on that mystery, revealing that the shift occurs abruptly, right at the boundary between wet and dry conditions. The findings appear in the journal Nature. "We found that if you go to wet climates -- places where you might expect to find a forest, whether in the high latitudes or in the Amazon -- the pH is acidic," said lead author Eric Slessarev, a Ph.D. student in the Department of Ecology, Evolution and Marine Biology at UCSB. "If you go to dry climates, the pH is alkaline. This is what we expected. But our analysis was able to confirm that the transition between those two zones is very abrupt. "It only takes a small change in climate to achieve the switch from that acid zone to the alkaline zone and there are fewer soils with an intermediate pH," Slessarev added. "Those soils are in places like Iowa or the Ukraine, which -- not coincidentally -- are places intensively farmed because those neutral range soils are the most fertile. Extreme pH tends to be bad for crops for a variety of reasons." Soil pH levels range from 0 to 14, with 7 being neutral. Levels below 7 are acidic, and those above are alkaline. Neutral soils are less common than either extreme and tend to cluster at the transition between wet climates and dry climates. The research team conducted a meta-analysis using soil databases from the United States, China, Canada, Australia, Brazil and the International Soil Research Information Center in Wageningen, Netherlands. The team evaluated approximately 60,000 data points to build a global soil pH map. "One thing that we can draw from our analysis is that the parts of the world that humans depend upon the most for agriculture sit on an edge between wet and dry climates and between acid soils and alkaline soils," Slessarev said. "What's more, our work demonstrates that soil pH -- and therefore soil fertility -- is tightly linked to climate. In fact, it's linked in a way that looks like a staircase, where a step exists between one space and another. For the parts of the world on the edge of that step, this means a very small change in climate could make a big difference in how the system functions."
  • 《全球土壤修复技术运用现状》

    • 来源专题:化肥农药减施增效
    • 编译者:金慧敏
    • 发布时间:2016-09-13
    • 美国约存在294000个污染场地,土壤污染情况严重。其中,1982-2005年间,共有1536个场地列入NPL。仅2007年,美国超级基金项目耗费3.8亿美元用于土壤修复项目。美国于20世纪80年代之后进行了大量土壤修复工程。美国超级基金计划所实施的土壤修复技术已成为世界各国了解最新土壤修复技术变化的重要窗口。 2002-2005年财政年度中,60%的污染源处理工程项目采用的是原位修复技术,比1982-2005年财政年度高了13个百分点。这主要是因为原位修复技术具有无需挖运土壤、修复成本低、适宜对深层污染介质修复、对施工人员健康影响小等特点。对美国1982-2005年间,977项土壤修复项目进行统计,浅色部分表示原位修复技术,深色部分表示异位修复技术。原位修复技术462项,占项目总数的48%,异位修复技术515项,占总数的52%。在所有污染修复项目中,26%采用原位蒸发提取,18%采用异位固化/稳定化,11%采用异位离场焚烧。近几年多项萃取和化学处理技术受到更多关注,而焚烧技术因可能产生二次污染越来越少被采用。 据估计,欧洲每年约有21.1亿欧元用于污染土壤的修复及管理工作。出了1978-2007年间,欧洲部分国家及整个欧洲不同土壤修复技术的运用现状。欧洲各国根据本国国情,所采用的土壤修复技术存在明显的较大差异。欧洲运用原位和异位热脱附、原位和异位生物处理、原位和异位物化处理技术修复污染场地的项目占所有统计项目的69.17%,其中原位热脱附、原位生物处理和原位物化处理修复技术占35%,异位热脱附、异位生物处理和异位物化处理修复技术占 34.17%,二者比重相当,其他修复技术占30.83%。在实际工程中,生物处理技术运用最多,达到35%,其中原位生物处理占18.33%,异位生物处理占16.67%。另外,将污染土壤作为废弃物而非可再生资源处理(包括挖掘处置技术、污染场地管制等)的工程项目在欧洲仍然占有较大比重,达到 37%。 我国土壤修复技术研究起步较晚,加之区域发展不均衡性,土壤类型多样性,污染场地特征变异性,污染类型复杂性,技术需求多样性等因素,目前主要以植物修复为主,已建立许多示范基地、示范区和试验区,并取得许多植物修复技术成果,以及修复植物资源化利用技术成果。物理/化学修复技术中研究运用较多的是:(1)固化-稳定化;(2)淋洗;(3)化学氧化-还原;(4)土壤电动力学修复。目标是污染场地土壤的原位修复技术。联合修复技术中研究运用较多的是:(1)微生物/动物-植物联合修复技术;(2)化学/物化-生物联合修复技术;(3)物理-化学联合修复技术。目标是混合污染场地土壤修复技术。