《复杂断层对深部岩体地应力分化和成集的影响》

  • 来源专题:关键矿产
  • 编译者: 欧冬智
  • 发布时间:2023-07-13
  • 高地应力将成为深部常态,因为地应力随深度线性上升。随着深度的增加,地质结构变得极其复杂。断层、小裂缝、节缝广泛发育。本文的目的是识别断层附近多个位置的地应力异常并论证其累积机制。在七个深井中进行了水力压裂试验。我们进行了超过千米钻孔深度的测试,以揭示和量化断层对原位的影响上盘、下盘、断层间、断层末端、断层交汇处和断层远场的应力。研究了断层位置和特征对应力方向和大小的影响,并与测试钻孔进行了比较。通过三维数值模拟揭示断层附近应力积累的非均质性,用于解释断层对地应力积累和分异的影响。由于区域构造和断层作用,其强度、方向和应力状态都截然不同。地应力的集中程度和方向变化会随着断层附近断层的位置而变化,但原位应力的大小和方向却不同。应力符合远离断层的区域构造应力。震源机制解已使用历史地震地面运动矢量进行了验证。结果表明,应力分异程度根据断层属性及其位置的不同而变化。断层、交汇处、下盘、断端、上盘之间应力分异及其强弱比值发生变化;沿着方向的顺序是下盘、断层之间、断层末端、交叉点和上盘。这项工作为整个周期中断层引起的应力积累和方向转变机制提供了新的线索。

















































相关报告
  • 《Nature | 甘蔗的复杂多倍体基因组结构》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-01
    • 2024年3月27日,哈德逊阿尔法生物技术研究所等机构的研究人员在Nature 在线发表题为The complex polyploid genome architecture of sugarcane的文章。 甘蔗(S. officinarum),以吨数计算是世界上收获最多的作物,已经塑造了全球历史、贸易和地缘政治,并目前负责全球80%的糖生产。虽然传统的甘蔗育种方法有效地培育出了适应新环境和病原体的栽培品种,但糖产量的提高最近已经停滞不前。产量增长停滞可能是由于育种种群内遗传多样性有限、育种周期长以及其基因组的复杂性所致,后者阻碍了育种者利用最近基因组测序的爆发,这对许多其他作物都有好处。因此,现代甘蔗杂交品种是最后一种没有参考质量基因组的主要作物。 该研究通过为R570生成多倍体参考基因组迈出了向前推进甘蔗生物技术的重要一步,R570是一种典型的现代栽培品种,是由驯化种(甘蔗)和野生种(野生甘蔗)之间的种间杂交得到的。与现有的R570单倍型表示相比,作者的87亿碱基组装结果包含了这个多倍体基因组中大约12个染色体拷贝的完整DNA序列。利用这个高度连续的基因组组装,研究人员填补了以前未定位的R570物理遗传图中的一个空白,描述了潜在的单拷贝Bru1抗褐锈病基因座的可能原因。这个多倍体基因组组装与基因组结构和分子靶点的精细描述将有助于加速甘蔗的分子和转基因育种,以及适应未来环境条件。
  • 《Cell | 使用设计的寡聚组装体调节FGF途径信号传导和血管分化 》

    • 编译者:李康音
    • 发布时间:2024-06-15
    • 2024年6月10日,David Baker 团队在国际顶尖学术期刊 Cell 上发表了题为Modulation of FGF pathway signaling and vascular differentiation using designed oligomeric assemblies 的研究论文。该研究通过从头设计的环形蛋白质来调控成纤维细胞生长因子(FGF)信号通路和血管分化,这种全新设计的蛋白质能够指导人类干细胞形成新血管,这种对干细胞发育的调控是朝着更有效的再生医学迈出的重要一步。 细胞表面受体聚集(Clustering)可以增强和维持对外源性信号的激活反应,因此人们对于调控受体聚集的技术颇感兴趣。此前曾利用天然存在的受体结合域来驱动受体聚集,并使用几何可调的二聚体配体来探究二聚化几何结构对信号输出的影响。更高阶的受体复合物被认为在多种信号传导系统中发挥作用;一个呈现受体结合域的可调节寡聚物支架将有助于研究纳米级拓扑结构对受体输出的影响。之前的设计工作产生了具有各种环形对称性的寡聚体,但这些蛋白质不易进行修改以产生不同的受体结合构象。 成纤维细胞生长因子受体(FGFR)是一种酪氨酸激酶,在胚胎发育和癌症中发挥着关键作用。该通路复杂且高度受调控,有四个FGFR基,以及两种由外显子8与外显子9的选择性剪接产生的异构体,这种选择性剪接改变了第三个免疫球蛋白样结构域(D3),生成了FGFR异构体IIIb和IIIc(简称b-异构体和c-异构体)。虽然D3是FGF结合区域的一部分,并且FGFR异构体对各种FGF配体的亲和力不同,但两种异构体对正常组织分化的贡献尚未完全阐明。c-异构体在许多实体瘤中发生扩增,因此可能是癌症治疗的靶点。 在这项最新研究中,研究团队描述了对几何可调的环状寡聚体的全新的从头设计,以克服当前支架系统存在的局限性,并使用这些合成支架与针对FGFR的c-异构体设计的特异性迷你结合剂一起,探究并操控血管分化。为了系统地探索受体亲和力和几何结构对信号传递结果的影响,研究团队设计了使用可模块化扩展的重复蛋白构建块的环形同源寡聚体,其中包含多达8个亚基。通过将全新设计的成纤维细胞生长因子受体(FGFR)结合模块整合到这些寡聚体支架中,研究团队生成了一系列具有强大的亲和力和几何结构依赖性钙离子释放和MAPK通路激活的合成信号转导配体。 这些设计的激动剂的高特异性揭示了两种FGFR异构体(b-异构体、c-异构体)在早期血管发育期间驱动动脉内皮细胞和血管周围细胞命运中的不同作用。该研究设计的模块化组装体在揭示关键发育过渡中的复杂信号传递机制以及开发未来治疗应用方面具有广泛的用途。 通俗来说,该研究从头设计了一类全新的环形蛋白质,能够靶向结合多达8个成纤维细胞生长因子受体(FGFR),通过改变环的大小和其他蛋白质的性质,可以控制干细胞在实验室条件下的成熟,能够形成功能性的和成熟的血管网,这些血管网可进一步形成管状结构,还能在划伤后愈合,并像预期的那样从周围环境中吸收养分。当移植到小鼠体内后,这些小型人体血管网在三周内就与小鼠循环系统建立了联系。 研究团队表示,该研究首次使用从头设计的蛋白质来指导干细胞成为形成动脉壁的内皮细胞,这一突破将帮助研究人员模拟相关疾病并再生血管。这项研究首先聚焦于构建血管网,但该技术还适用于许多其他类型的组织。这为研究组织发育开辟了一种新途径,并可能为脊髓损伤等目前没有好的治疗选择的疾病带来全新的治疗药物。