《物理所在基于镁基新材料的下一代热电制冷模块研制工作中获进展》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-02-24
  • 热电材料的重要功能在于可以实现热能和电能直接相互转化,热电制冷技术则基于电流经过不同导体时发生热量转移的原理,通过控制直流电的方向和大小实现对热流密度的方向和大小的调控。热电制冷具有调节精度高、响应快的特点,与一般的机械式制冷相比,它不需要压缩传动等运动部件,更不需要制冷剂,不产生任何排放与环境污染,是一种理想的全固态高效制冷及热管理技术。通常情况下,衡量热电器件制冷性能的关键参数包括: 最大制冷温差ΔTmax,最大制冷量Qcamx和最大制冷能效COPmax。如下列公式所示,这些性能参数与构成器件的热电材料、界面电极和热电器件的几何尺寸设计密切相关,其中,I、TC、S、R、K等分别对应通过器件直流电流大小、器件冷端温度、器件Seebeck系数、热电臂电阻、热电臂热导等参量。

    由公式可看出,热电器件或热电模块的性能表现主要取决于其核心热电材料的热电输运性能。而长期以来,在近室温热电材料及热电制冷方面,Bi2Te3是唯一商业化的高性能(zT~1)材料体系。Bi2Te3热电制冷器件被广泛用于冷链存储、医疗器械和光通讯控温等重要行业。未来随着通讯和电子信息领域对芯片控温需求的进一步提升,热电制冷产业前景更加广阔。但是作为目前核心热电制冷材料,Bi2Te3本身存在一些显著缺陷,例如机械性能差、使用Te元素造成的高成本、N型Bi2Te3材料zT较差等,限制了这类材料的进一步推广和拓展。因此发现新的近室温热电材料体系成为热电领域的一个关键科学问题和任务,在此背景下,近年来镁基热电材料如MgAgSb、Mg2(Si,Sn),尤其是N型Mg3(Sb,Bi)2成为备受关注的热点材料体系。相比传统碲化铋商业材料,Mg3(Sb,Bi)2使用镁、锑、铋作为制备原材料,摒弃了昂贵且有毒副作用的碲元素,可节约材料成本90%左右,同时Mg3(Sb,Bi)2兼具优良的机械性能与环保优势。针对该材料,国内外相关研究进展迅速,但是大多数集中在基础材料性能方面,而在至关重要的可服役全尺度热电器件的构筑和应用方面尚属空白。

    近年来,中国科学院物理研究所/北京凝聚态物理国家研究中心研究员赵怀周课题组瞄准Mg3(Sb,Bi)2材料未来应用中的关键科学与技术问题,在该材料体系热电性能提升、化学与热稳定性增强、界面电极材料设计与制备、热电臂加工与焊接组装等环节取得一系列突破,最终实现具有稳定服役性能的商业尺寸热电制冷模块的构筑,为该类材料的应用奠定了基础。近日,基于N型Mg3.2Bi1.4975Sb0.5Te0.0025和P型Bi0.5Sb1.5Te3所构筑的全尺度热电制冷模块相关论文Next-Generation Thermoelectric Cooling Modules Based on High-Performance Mg3(Bi,Sb)2 material发表在Joule上。

    该工作中,研究团队首先通过SPB模型对Mg3(Bi,Sb)2材料组分进行了预设计(图2A),并通过理论预测了对应器件的制冷温差(图2B)。同时针对目前Mg3(Bi,Sb)体系存在的化学和热电性能稳定性差的问题,研究人员通过热变形工艺(图2C)对Mg3.2Bi1.4975Sb0.5Te0.0025的成型样品进行了进一步处理,显著提升Mg3.2Bi1.4975Sb0.5Te0.0025材料的热电性能稳定性(图2D)。该工艺通过缺陷调控,在样品中引入高浓度的位错及点缺陷(图2E),分析显示表明这类缺陷的存在有助于实现Mg离子迁移和扩散,从而解决了材料中局部区域Mg元素成分缺失问题(直接引起材料载流子密度和电导率降低),为该类材料的实用化奠定基础。

    相较于材料性能,热电器件的构筑是一个复杂的综合性问题。界面材料和制备工艺是关键因素,研究发现常规的电极材料Fe、Ni难以满足全尺度Mg3(Bi,Sb)2热电器件的稳定性和重复性要求。对此,研究团队首先设计开发了Mg2Cu过渡层材料,针对Mg3(Bi,Sb)2热电臂引入富镁的环境从而有助于抑制Mg元素成分缺失。同时由于Mg2Cu/Mg3(Bi,Sb)2界面热力学稳定,不发生明显的元素扩散反应(图3A、3B和3C)。除此之外,Mg2Cu过渡层的熔点(550℃)及加工温度低,可进一步防止电极制备过程中Mg3(Bi,Sb)2材料性能的损失。测试显示,Mg2Cu/ Mg3(Bi,Sb)2界面电阻率为12μΩcm2(图3D),完全满足欧姆接触需求;Mg2Cu热膨胀系数相对于Fe、Ni,与Mg3(Bi,Sb)2热电臂材料更加匹配(图3E和3F),避免了器件服役中的热应力问题。在以上材料与界面优化的基础上,团队成功构筑出性能优异的7对和31对两种Mg3(Bi,Sb)2基制冷模块(图4B)。测试结果显示,模块室温最大制冷温差达到了59 K(图4C),温差5 K时最大制冷能效COP达到8,连续服役6个月性能无衰减,与商业碲化铋制冷器件相比,Mg3(Bi,Sb)2基新器件最大的优势在于性能投入比提升了23%左右(图4D)。该工作中,研究团队对新材料制冷模块进行了完备的表征,制冷量、COP、温差,以及服役稳定性都达到或接近商业Bi2Te3器件水平(图5),显示出Mg3(Bi,Sb)2材料及其全尺度热电制冷模块在下一代热电制冷应用方面的巨大潜力。

    相关研究工作获得科学技术部重点研发项目支持。

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《探索 | 超高性能全镁基热电材料与器件的创制和验证》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-09-27
    • 热电是一种可实现热能与电能直接相互转化的全固态清洁能源技术,在主动制冷、精准热管理和废热回收等领域发挥关键作用。目前,作为唯一的商业化热电材料体系,碲化铋(Bi2Te3)材料及器件广泛应用于制冷和光电模块精准控温,以及近室温300 ℃下废热发电等领域。但碲化铋本身存在一些显著缺点,例如材料成本高,平均热电优值较低,商业化热电器件转换效率仅为6 %左右,都限制了这类材料的推广和更广泛应用。国际热电领域在近室温新型热电材料中发现了N型Mg3(Sb,Bi)2 和P型MgAgSb材料,其有着优异的宽温域热电性能和良好的机械加工性能,成为最有希望替代商业碲化铋的近室温热电材料体系,而针对这两种材料的性能提升和器件研发则成为热电领域的研究焦点之一。 最近,中国科学院物理研究所/北京凝聚态物理国家研究中心赵怀周研究员团队与合作者通过改进合成装备和工艺,克服了由于P性α-MgAgSb成相过程中极易形成银空位缺陷导致电学性能不佳的长期挑战,首次制备出具有整数计量比的α-MgAgSb材料,并通过近相变点退火,实现具有马赛克多晶特征的大晶粒生长,获得了载流子迁移率为93.3cm2 V-1s-1, 室温至300℃间平均zT达到1.4的高性能材料样品,为α-MgAgSb材料报道最高水平,同时也明显超越了对应的P型碲化铋材料。进一步通过与高性能N型Mg3(Sb,Bi)2材料搭配,构筑出具有7对热电臂的发电模块,最大热电转换效率达到12%,突破了我国“十三五”期间国家重点计划所制定的10%的既定目标,也是目前国际热电领域近室温热电转换效率最高记录。 图 α-MgAgSb及全镁基发电模块的热电性能。(a) α-MgAgSb热电性能优化策略示意图。(b) MgAg0.97Sb0.99、MgAgSb和退火后MgAgSb的室温功率因子PF和zT随载流子浓度的变化。(c)本工作中α-MgAgSb的zT值与文献结果对比(插图为本研究中制备的α-MgAgSb与不同来源的商业p型Bi2Te3之间的z值比较)。(d) 全镁基模块的转换效率与文献报道的单级模块比较。(c)中的紫色线和蓝色线分别代表由中国科学院上海硅酸盐研究所和北京师范大学提供的第三方测试结果
  • 《近代物理所在石墨烯纳米孔研制中取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-29
    • 石墨烯是由单层碳原子以蜂窝状点阵组成的典型二维纳米材料,完美单层石墨烯对于任何分子均不能渗透,是迄今为止厚度最薄且能分离不同两相的隔膜材料。带有纳米孔的石墨烯则表现出优异的溶液离子和气体分子选择性,在海水淡化、污水处理、空气净化等领域具有广阔的应用前景。目前国际上已发展了多种制备石墨烯纳米孔的方法,但如何在大面积石墨烯样品上快速制备高密度纳米孔仍未得到有效解决。中国科学院近代物理所材料研究中心研究人员在聚合物纳米孔研究基础上,发明了一种快速制备具有微孔支撑的大面积多孔石墨烯的新方法,解决了当前多孔石墨烯研究中的瓶颈问题。   科研人员把大面积石墨烯转移至PET膜上形成G/PET复合结构(图A),然后利用兰州重离子加速器提供的高能重离子对G/PET复合结构进行辐照,形成石墨烯纳米孔并在PET中形成潜径迹(图B);再利用非对称蚀法在PET中制备出锥形孔并形成具有微孔支撑的石墨烯纳米孔(图C)。该方法充分发挥了兰州重离子加速器离子能量高、穿透能力强的特点,可方便、快速地制备出具有微孔支撑的大面积、孔密度可控的多孔石墨烯,并获得授权发明专利。 重离子辐照技术制备石墨烯纳米孔   研究人员利用该方法制备出单个石墨烯纳米孔,精确研究了溶液中离子在纳米孔的输运特性,发现石墨烯纳米孔不仅具有良好的离子选择性,而且表现出巨大的离子整流效应,该结果在微纳流控器件开发和石墨烯纳滤膜制备方面具有重要意义。研究工作得到国家自然科学基金和中国科学院青年创新促进会的支持,相关研究成果发表在ACS Applied Materials & Interfaces上。