《探索 | 通过矢量光束分选为光学技术树立新标准》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2024-06-13
  • 高效管理和利用 VSB 历来是一项挑战。它们的复杂性需要精确的分类和识别方法才能用于实际应用。因此,提高光通信的效率、带宽和安全性,并促进量子计算的创新,取决于我们有效处理这些复杂波束的能力。

    这项研究的核心是一种基于自旋多路复用衍射超表面的紧凑、高效的工具。这种精密设计的表面在微观尺度上工作,以非凡的精度操纵光束。

    该设备引导光线穿过一系列精确校准的超表面层。每一层都与光相互作用,逐渐将其塑造成预定的配置。

    当光线离开设备时,每种类型的 VSB 都会被分类,并可以通过其独特的特征进行识别。这种同时对光束进行分选的能力为高维通信和量子信息处理的进步铺平了道路。

    技术影响包括:

    光通信:在保持安全的同时提高数据传输速率仍是重中之重。超表面处理复杂光束的能力提高了数据传输范式变化的可能性,从而提高了现有物理基础设施的效率。

    量子计算:经典计算和量子信息处理本质上是不同的。对光束的精确操纵为量子计算系统加速开辟了新的可能性。

    挑战与展望

    尽管这项研究是向前迈出的重要一步,但在优化设备以适应实际使用并将其集成到当前技术框架中仍然存在问题。研究人员仍然对这项技术的潜力充满希望,并正在努力改进它。

    从实验室创新到广泛的实际应用的道路是复杂的,但随着这些激动人心的发现,通往日常整合的道路变得越来越清晰。

相关报告
  • 《探索 | 研究人员开发用于高速光束控制的可编程光学器件》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-11-30
    • 图:研究员开发了一种可编程的无线空间光调制器 在《Star Wars: Episode IV—A New Hope》中的一个场景中,R2D2投射了Leia公主绝望求援的三维全息图。那场拍摄于45年前的戏,有点电影魔力,即使在今天,我们也没有技术创造出如此逼真和动态的全息图。 生成一个独立的3D全息图将需要对光进行极其精确和快速的控制,这超出了基于液晶或微镜的现有技术的能力。 由麻省理工学院的一个团队领导的一个国际研究小组花了四年多的时间来解决这个高速光束形成的问题。他们现在已经展示了一种可编程的无线设备,它可以控制光线,例如通过将光束聚焦在特定方向或控制光线强度,并且比商业设备更快。 他们还开创了一种制造工艺,确保在大规模制造时,器件质量保持近乎完美。这将使他们的设备在现实环境中更可行。 该设备被称为空间光调制器,可用于为自动驾驶汽车创建超快激光雷达(光检测和测距)传感器,其对场景的成像速度比现有机械系统快100万倍。它还可以加速大脑扫描仪的速度,后者利用光线“透视”组织。通过能够更快地对组织成像,扫描仪可以生成更高分辨率的图像,这些图像不受活体组织(如流动的血液)动态波动的噪声影响。 首席作者Christopher Panuski表示:“我们专注于控制光,这自古以来就是一个反复出现的研究主题。我们的发展是朝着在空间和时间上实现对使用光的无数应用的完全光学控制。” 这项研究发表在《Nature Photonic》。 操纵光 空间光调制器(SLM)是一种通过控制光的发射特性来操纵光的装置。类似于高架投影仪或计算机屏幕,SLM转换通过的光束,将其聚焦在一个方向或折射到多个位置以形成图像。 在SLM内部,二维光调制器阵列控制光。但光的波长只有几百纳米,因此为了精确控制高速光,该设备需要一个极其密集的纳米级控制器阵列。研究人员使用光子晶体微腔阵列来实现这一目标。这些光子晶体谐振器允许以波长尺度可控地存储、操纵和发射光。 当光进入空腔时,它被保持大约一纳秒,在泄漏到太空之前反弹超过100000次。虽然纳秒仅为十亿分之一秒,但这足够设备精确操纵光线的时间。通过改变空腔的反射率,研究人员可以控制光线如何逃逸。同时控制阵列可以调制整个光场,因此研究人员可以快速准确地控制光束。 Panuski说:“我们的设备的一个新颖之处在于其设计的辐射模式。我们希望每个腔体的反射光成为聚焦光束,因为这提高了最终设备的光束控制性能。我们的工艺本质上是一种理想的光学天线。”。 他解释说,为了实现这一目标,研究人员开发了一种新的算法来设计光子晶体器件,当光从每个腔逸出时,光子晶体器件将光形成窄束。 使用光控制光 该团队使用微型LED显示器来控制SLM。LED像素与硅芯片上的光子晶体对齐,因此打开一个LED可以调谐单个微腔。当激光击中激活的微腔时,腔根据LED发出的光对激光的响应不同。 Panuski表示,使用LED控制设备意味着阵列不仅可以编程和重新配置,而且完全无线。他补充道:“这是一个全光控制过程。如果没有金属线,我们可以将设备放置在一起,而不必担心吸收损耗。” 弄清楚如何以可扩展的方式制造如此复杂的设备是一个长达数年的过程。研究人员希望使用为计算机制造集成电路的相同技术,从而使该设备能够大规模生产。但是在任何制造过程中都会出现微小的偏差,如果芯片上有微米大小的空腔,这些微小的偏差可能会导致性能的巨大波动。 研究人员与美国空军研究实验室合作,开发了一种高度精确的大规模制造工艺,在12英寸硅片上冲压数十亿个空洞。然后,他们结合了后处理步骤,以确保微腔都在相同的波长下工作。 研究人员将激光照射到微腔上。激光将硅加热到1000摄氏度以上,产生二氧化硅或玻璃。研究人员创造了一种系统,用同一种激光同时轰击所有空腔,并添加了一层玻璃,使共振(即空腔振动的自然频率)完美对齐。 Panuski说:“在修改了制造工艺的一些特性后,我们证明我们能够在具有良好均匀性的铸造工艺中制造出世界级的器件。这是这项工作的一个重要方面,即如何制造这些器件。” 该装置在光场的空间和时间上都表现出近乎完美的控制,其 “时空带宽”是现有SLM的10倍。能够精确控制巨大的光带宽,可以使能够极其快速地传输大量信息的设备成为可能,例如高性能通信系统。 现在,他们已经完善了制造工艺,研究人员正在努力制造更大的用于量子控制或超快传感和成像的设备。
  • 《探索 | 视觉成像技术帮助机器人和汽车看得更清楚》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-04-06
    • 尽管机器人的眼睛没有视网膜,但帮助它们更自然、更安全地观察和与世界互动的关键是眼科医生办公室里常见的光学相干断层扫描(OCT)仪器。 许多机器人公司正在将一种成像技术集成到他们的传感器包中,即光探测和测距,简称LiDAR。目前,无人驾驶汽车开发商对该技术的关注和投资很大,该技术的工作原理与雷达类似,但它使用的是激光产生的短脉冲光,而不是发射宽带无线电波并探测反射信号。 然而,传统的time-of-flight激光雷达存在许多缺点,使其难以在许多3D视觉应用中使用。因为这需要探测非常微弱的反射光信号,对于目前大部分的激光雷达系统的探测器,信号甚至很容易淹没在环境光信号中。它的深度分辨率也很有限,在对高速公路或工厂车间等大片区域进行密集扫描,通常需要很长时间。为了应对这些挑战,研究人员正转向利用一种名为调频连续波(FMCW)激光雷达的系统。 “FMCW激光雷达与OCT具有相同的工作原理,生物医学工程领域自20世纪90年代初以来一直在发展OCT相关技术,”在杜克大学Michael J. Fitzpatrick生物医学工程杰出教授Joseph Izatt实验室工作的博士生Qian Ruobing说。“但30年前,没有人知道自动驾驶汽车或机器人会得到快速发展,所以OCT技术仅被用于组织成像。现在,为了让它在其他新兴领域发挥更大的作用,我们需要利用它超高的分辨率来获得更大的距离和速度。” 在3月29日发表在《Nature Communication》上的一篇论文中,杜克大学的团队展示了相关研究,他们在对OCT研究中学习到的一些方法,可以将之前的FMCW激光雷达数据吞吐量提高25倍,同时仍能实现亚毫米深度精度。 OCT是一种光学模拟超声波,它的工作原理是将声波发送到物体上,然后测量它们返回的时间。 为了计算光波的返回时间,OCT设备测量了它们的相位与相同的光波相比移动了多少,这些光波经过相同的距离,但没有与另一个物体相互作用。 FMCW激光雷达采用了类似的方法,只是做了一些调整。 该技术发出的激光束在不同频率之间不断变换。 当探测器收集光来测量其反射时间时,它可以区分特定的频率模式和任何其他光源,这使得它可以在各种照明条件下高速工作。 然后,它测量无阻碍光束下的任意相移,这是一种比目前的激光雷达系统更精确的确定距离的方法。 “看到我们几十年来研究的生物细胞规模的成像技术可以转化为大规模、实时的3D视觉技术,这是非常令人兴奋的,”Izatt说。“这正是机器人安全地观察人类并与人类互动所需要的能力,甚至在增强现实中,用实时3D视频取代虚拟化身。” 之前使用激光雷达的大部分工作都依赖于旋转镜子来扫描被反射的激光。虽然这种方法很有效,但无论它使用的激光有多强,它从根本上受到机械反射镜速度的限制。 杜克大学的研究人员使用的是一种衍射光栅,它的工作原理类似于棱镜,可以将激光分解成彩虹般的频率,当它们离开光源时就会散开。因为原始的激光仍然在快速地在一个频率范围内扫描,这意味着扫激光雷达光束的速度要比机械反射镜的旋转速度快得多。这使得系统能够在不损失深度和定位精度的情况下快速覆盖广泛的扫描区域。 虽然OCT设备是用于测量e物体内部几毫米深的微观结构的,但机器人3D视觉系统只需要定位人体尺度物体的表面。为了实现这一目标,研究人员缩小了OCT使用的频率范围,只寻找从物体表面反射产生的峰值信号。这使系统的分辨率降低了一点,但成像范围和速度比传统的激光雷达要大得多。 图1:真实世界物体的视频速率3D成像结果。a–d轴向间隔>9 cm的两个陶瓷咖啡杯的成像结果;e–h人体头部模型的成像结果 结果显示,FMCW激光雷达系统实现了亚毫米定位精度,数据吞吐量比之前的演示提高了25倍。结果表明,该方法足够快速和准确,可以实时捕捉到人体运动部位的细节,比如点头或握紧的手。 lzatt说:“就像数码相机已经无处不在一样,我们的愿景是开发新一代基于激光雷达的3D相机,这种相机速度快,功能强大,能够将3D视觉集成到各种产品中。”“我们周围的世界是3D的,所以如果我们想让机器人和其他自动化系统与我们自然而安全地互动,它们需要能够看到我们,就像我们可以看到它们一样。”