《小芯片标准更有利于中国芯片,缩短与海外的芯片技术差距》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-01-03
  • 随着芯片工艺研发难度的加大,小芯片标准日益受到全球芯片行业的关切,而小芯片技术成为潮流将为中国芯片加速芯片技术发展提供支持,有利于中国芯片缩短与海外芯片技术的差距。

    在以往芯片工艺制程技术的竞争是芯片技术竞争的关键,然而到了如今的3nm工艺上,芯片工艺研发已遇到困难,仅靠芯片工艺技术研发已很难持续提升芯片的性能。

    台积电在2020年就量产了5nm,本来台积电预期2021年能量产3nm,延续此前的芯片制造工艺研发迭代时间,然而事与愿违的是3nm工艺直到今年才研发成功,然而在3nm工艺研发成功之后又被苹果指出3nm工艺达不到预期的性能,成本提升幅度又太大,导致苹果舍弃了3nm工艺而采用了由5nm工艺改良而来的4nm。

    3nm研发遇阻证明了摩尔定律似乎真的无法延续了,而3nm工艺尚且无法顺利量产,那么2024年能否量产2nm工艺也就同样存在疑问,海外芯片技术延续此前1-2年升级一代芯片制造工艺的路线已被打断。

    芯片制造工艺升级节奏被打乱,对于中国芯片来说其实是有利的,这为中国进一步缩短与海外芯片技术水平提供了时间和空间,中国这几年也积极以多种途径摆脱芯片制造工艺的限制,力求提升芯片性能。

    中国仍然在努力发展先进工艺,据称中芯国际正在力推芯片制造工艺往7nm工艺演进,一旦7nm工艺量产,而台积电等芯片制造企业在先进工艺研发进程受阻,中国与海外芯片制造工艺的差距将缩短。

    除了在芯片制造工艺方面缩短差距之外,中国还在研发芯片堆叠、小芯片技术等提升芯片性能。芯片堆叠技术是将两枚由14nm工艺生产的芯片堆叠在一起获得更强的性能,如此可以获得接近于7nm工艺的性能,这种技术应用于手机上存在着发热量过大的问题,但是对于电脑、AI等行业来说已不成问题,台积电就为英国一家厂商生产了类似的芯片,将两枚7nm芯片封装在一起可以提升四成性能,甚至超过5nm芯片的性能,证明了可行性。

    小芯片技术则是另一种提升芯片性能的技术,通过将不同工艺、不同性能的芯片封装在一起缩短各种芯片之间的沟通时间提升整体性能,例如将存储芯片、GPU、CPU、AI芯片等封装在一起,整体性能就能得以大幅提升,这方面中国也已发布了自主研发的小芯片技术标准。

    在封装技术上,中国已具有封装4nm芯片的技术,甚至一家国产封装芯片企业还获得了AMD的数年先进芯片封装订单,证明了中国在芯片封装技术上达到全球一流水准,这更将有助于中国大幅缩短与海外芯片的性能差距,满足国内制造业对先进芯片的需求。

    可以预期随着海外芯片行业在先进芯片制造工艺方面遇阻,芯片性能提升转向芯片封装技术之后,中国在先进芯片技术方面与海外芯片的差距将持续缩短,海外芯片技术对中国芯片的发展影响将越来越小,中国芯片的技术受限的影响将越来越小,他们将越来越难以限制中国芯片技术的发展。

相关报告
  • 《中芯国际量产14nm制程芯片》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2019-10-21
    • 中芯国际近日表示,通过加大研发投入,14nm制程工艺芯片已经实现量产,并将于2021年正式出货。 继去年8月中芯国际首次宣布14nm芯片研发成功,到如今超预期实现量产,良率高达95%。这标志着中芯国际正式赶超台积电南京12寸厂的16nm制程工艺,追平台联电14nm制程工艺,正式跻身全球晶圆先进制程工艺代工厂的行列,这是中国半导体发展史上的重要里程碑。 对于芯片厂商而言,缩减制程数值是它们不遗余力去实现的目标。但是,当栅极宽度逼近20nm时,就会遇到新的技术瓶颈,导致研发难度和成本急剧上升:由于栅极过窄,对电流控制能力急剧下降,二氧化硅绝缘层会变得更薄,容易导致电流泄漏。因此,就需要光刻设备、绝缘材料、芯片栅极改制、FinFET 3D等新技术新工艺以突破技术壁垒。 从制程工艺的发展情况来看,从28nm到14nm是一道分水岭,随着摩尔定律逐步失效,制作更先进制程的芯片需要更长周期,业界至此也开始两极分化为具备先进制程或是传统制程的不同技术能力。 全球六大IC晶圆厂制程演进表在全球半导体业中,能实现14nm工艺节点的企业不到10家,包括英特尔、三星、台积电、格罗方得、联电、东芝、海力士、美光等。 中芯国际14nm芯片实现量产,获得的是成为全球晶圆先进制程工艺代工厂的入场券。至此,“中国芯”距离当前已经量产的最先进制程7nm仅相差两代,产品差距缩小到四年之内。 四年实现技术飞跃 作为中国大陆规模最大的集成电路芯片制造企业,中芯国际在2015年成功量产了28nm制程工艺芯片,并在短短四年实现了从28nm到14nm的飞跃,而台联电为此耗费了整整5年。 技术快速迭代,与中芯国际的高投入密切相关。2018年,中芯国际向荷兰ASML订购了一套EUV设备(极紫外线光刻机),据传是当时最昂贵和最先进的芯片生产工具,价值高达1.2亿美元,2019年初,这一设备已经如期交付。 据ASML官网介绍,这台价值1.2亿美元的设备,能够支持精细到5nm工艺节点的批量生产,拥有每小时155片的300mm尺寸晶圆雕刻能力。这为中芯国际成功实现14nm量产提供了关键设备支撑。在顶尖光刻设备的加持之下,可以想见,中芯国际距离12nm、10nm甚至7nm的时代也不会太遥远。 据公开报道,中芯国际14nm芯片目前已有超过10个流片客户,其中有车用芯片客户流片,并通过了车用标准Grade 1的测试门槛,众所周知,车用市场对芯片品质门槛要求最高。 对于全球大型芯片制造厂商而言,28nm芯片技术已经非常成熟,产能显得有些过剩。而在另一端,10nm以下制程技术则非常尖端,行业玩家只剩下金字塔尖的台积电、三星和英特尔。 而居于两者中间位置的14nm显然成为了中坚力量,成为绝大多数中高端芯片的主要制程。 有数据统计,在2019年上半年,整个半导体销售市场规模约为2000亿美元,其中65%芯片采用14nm制程工艺,仅10%左右的芯片采用7nm,25%左右采用10nm和12nm,14nm可以说是当下应用最广泛、最具市场价值的制程工艺。 随着5G和AIoT时代的到来,特别是在智慧城市、自动驾驶、安防物联网等领域各项产品日趋丰富,芯片也逐渐专注于针对特殊场景的优化,专用芯片即将迎来“百花齐放”的物种大爆发时代,广泛的AIoT场景,将让14nm制程的芯片拥有庞大的市场空间。 目前,国内已经有超过20家企业投入AI芯片的研发中来。而中芯国际对于关键制程的把控,意味着国内芯片设计企业和AI公司在应用14nm芯片产品方面获得更多的自主能力,从而实现真正完全的“中国智造”。
  • 《洞见 | 先进封装标准要统一,芯片三巨头谁答应?》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-29
    • 最近,有专家呼吁业界尽早统一封测技术标准,特别是先进封装。 SEMI日本办事处总裁Jim Hamajima表示,芯片行业需要更多后端生产流程的国际标准,以使英特尔和台积电等晶圆厂能够更有效地提高产能。 当前,台积电、英特尔等公司都在建设自家的先进芯片封装技术体系和生态系统,都在使用不同的标准,这样的话,生产效率并不高。Jim Hamajima表示,包括芯片封装和测试在内的后端工艺比芯片制造的前端工艺(如光刻)更加“分裂”,而光刻等前端工艺广泛使用了SEMI制定的标准。他认为,随着公司追求更强大的芯片,这可能会影响行业的利润水平。 01芯片制造门槛高,标准易统一 芯片制造是半导体产业门槛最高的板块,投资高、玩家少。目前,在先进制程芯片制造领域,仅剩下台积电、三星和英特尔这三家了。芯片制造过程需要2000多道工序,可以分为8大步骤,包括:光刻、刻蚀、化学气相沉积(CVD)、物理气相沉积(PVD)、离子注入(Ion Implant)、化学机械研磨(CMP)、清洗、晶圆切割(Die Saw)。 2000多道工艺流程中蕴藏着晶圆厂的智慧、核心技术和雄厚的财力,技术含量非常高,且需要长年的积累,并不是购买了先进的设备,就能造出合格的芯片。当然,先进的设备也很重要,巧妇难为无米之炊嘛。 由于投资巨大,技术含量非常高,特别是较为先进的制程工艺,企业进入的资金和技术门槛高,使得玩家比较少,而且,随着先进制程发展到3nm、2nm,门槛就更高了,且向前发展和演进的难度超高,仅有的几个玩家做起来也很吃力。在这种情况下,很难出现百花齐放的局面,统一标准就相对容易,且能使用较长时间。 02封装测试新标准之争 封装测试是芯片生产的最后一环,多数情况下,封装测试的技术含量和实现难度比前端的芯片制造低。但芯片封装也是有标准的,这些标准相对较多,且变化也比前端的芯片制造标准快,特别是芯片正朝着高集成度、小特征尺寸和高I/O方向发展,对封装技术提出了更高要求,随着SiP及先进封装技术的出现和发展,需要重新定义芯片的封装和测试。 与此同时,由于前端芯片制造面临技术和工艺发展瓶颈(如摩尔定律的失效),使后端封装成为晶圆大厂眼中的决胜关键,近年来,各大晶圆厂都在积极投资研发先进封装技术。 综上,前端芯片制造工艺难以突破,后端的封装又相对容易,这两大因素共同促使新封装技术和标准涌现。全球范围内,先进封装的市场份额在2022年达到了47.2%,先进封装市场的增速超过了传统封装,预计到2026年,先进封装的市场份额将提升至50.2%。这种增长主要得益于AI和高性能计算领域的旺盛需求,这些领域对高集成度、高性能和低功耗芯片有着巨大的需求。 目前,先进封装技术仍然以倒装芯片(Flip-Chip)为主,3D堆叠和嵌入式基板封装(ED)的增长速度也非常快。此外,其它先进封装技术,如扇出型封装(Fan-Out)和晶圆级封装(WLCSP)也在市场上占据重要位置。这些封装技术在提高芯片性能和减少封装尺寸方面具有显著优势,广泛应用于智能手机和其它移动设备。 目前,先进封装应用最火的就是HBM内存。HBM通过逻辑芯片和多层DRAM堆叠来实现高速数据传输,每层之间通过硅通孔(TSV)和微凸点连接,突破了带宽瓶颈,成为Al训练芯片的首选。HBM内部的DRAM堆叠属于3D封装,而HBM与其它部分合封于硅中介层,属于2.5D封装。 在高科技产业,一流企业制定标准,二流企业执行标准。半导体业是典型代表。在先进芯片封装技术方面,大厂不仅遵守行业内的执行标准,还要超越这些标准,形成自己独特的标准和工艺,它们正在积极制定一系列规范和要求,包括工艺流程、设备参数、材料选择、质量控制等。这可以反映出芯片制造企业的技术水平和创新能力,有益于赢得客户、提升竞争力。还有一点很重要,那就是与传统封装测试工艺不同,先进封装的关键工艺需要在前端芯片制造平台上完成,是前道工序的延伸。这显然是台积电、三星和英特尔等晶圆大厂的先天优势,因此,它们开发先进封装工艺就更加顺理成章了。 目前来看,在先进封装技术商业化方面,台积电起步早,市场影响力也最大。当下,火爆的HBM内存主要采用台积电的CoWoS封装技术。CoWoS是台积电于2012年研发的一种2.5D封装技术,可分为CoW(chip on wafer)和oS(on substrate)两步,CoW是将计算核心、I/O die、HBM等裸片封装在硅中介层上,然后再把CoW裸片整体封装在基板(Substrate)上,即oS环节。CoWoS可以节省空间,实现HBM所需的高互联密度和短距离连接;还能将不同制程的芯片封装在一起,在满足Al、GPU等加速运算的需求的同时控制成本。 据Omdia统计,,2023年第三季度,英伟达售出近50万个A100和H100芯片,得益于人工智能和高性能计算的需求,英伟达当季在数据中心硬件上获得了145亿美元的收入。除了英伟达,AMD的最新AI GPU产品MI300也要采用台积电的CoWoS(2.5D)和SolC(3D)封装技术。庞大的需求量导致CoWoS产能供不应求。除了CoWoS,台积电还在开发新的封装技术,据报道,该晶圆代工龙头已经组建了专门的团队,切入专业封装测试厂(OSAT)过去多年来一直开发的FOPLP(Fan-out Panel Level Package)封装技术。 台积电开发的FOPLP可以看作是矩形CoWoS封装,目前主要针对以英伟达为主的AI GPU领域,具有单位成本更低、封装尺寸更大等优势。未来还可以进一步整合台积电3D Fabric平台上的其它技术,为2.5D/3D先进封装解决方案服务于高端产品应用铺路。 看到台积电在先进封装市场搞得风生水起,三星和英特尔要加把劲儿了。三星、英特尔也意识到了问题,纷纷投入新一代先进封装技术的开发工作。目前,三星自研的先进封装技术和服务包含I-Cube(2.5D),以及X-Cube(3D)等。对于智能手机或可穿戴设备等需要低功耗内存的应用,三星已提供面板级扇出型封装和晶圆级扇出型封装平台。三星的I-Cube封装技术有多个版本,其中,I-Cube S是一种异构技术,将一块逻辑芯片与一组HBM裸片水平放置在一个硅中介层上,可实现高算力、高带宽数据传输及低延迟,I-Cube E技术采用硅嵌入结构,拥有PLP(面板级封装技术)大尺寸、无硅通孔结构的RDL中介层等特点。H-Cube是一种混合载板结构,将ABF载板和 HDI(高密度互连)技术相结合,可在I-Cube 2.5D封装中实现较大封装尺寸。英特尔正在推广其嵌入式多芯片互连桥(EMIB)2.5D封装技术。结构简单、信号干扰低是EMIB的主要优势,应用这一技术,封装过程中无需制造覆盖整个芯片的硅中介层,以及遍布在硅中介层上的大量硅通孔,使用较小的硅桥在裸片间进行互联即可。与普通封装技术相比,EMIB由芯片I/O至封装引脚连接并未发生变化,无需再通过硅通孔或硅中介层进行走线。这种架构和工艺,不仅可以降低不同裸片间的传输延时,还减少了信号传输干扰。由于三星和英特尔的先进制程(5nm以下)市场影响力和商业化水平明显弱于台积电,在这种情况下,对前端芯片制造工艺和平台依赖度很高的先进封装技术,就很难打开局面,赚钱能力有限。由于先进封装的市占率越来越大,晶圆厂又有先天发展优势,这就使传统OSAT封测厂有些尴尬,发展脚步不如台积电那么顺畅。台积电在先进封装领域的强势地位,促使其将更多资源投向先进封装技术和服务,以进一步巩固市场地位。这可能会使OSAT企业的机会越来越少。 日月光投控、安靠科技等传统OSAT大厂并不会坐以待毙。就广义上的先进封装而言,传统OSAT依然占据着较大的市场份额,据Yole统计,2022年,先进封装市场,OSAT的市场份额为65.1%,IDM的市场份额为22.6%,晶圆代工厂的市场份额为12.3%。其中,日月光占比最高,达到25.0%,安靠占比12.4%,台积电占比12.3%,三星占比9.4%,英特尔占比6.7%。然而,IDM和晶圆代工厂主攻高端3D封装,而OSAT普遍较为传统,主攻中低端倒装、晶圆级封装,这在AI用处理器和HBM内存快速发展的当下,发展的势在IDM和晶圆代工厂一边,要想赶上发展潮流,OSAT封测厂必须将更多资源投向高端封装工艺和服务。 以封测龙头企业日月光为例,正在开发新的封装技术,如扇出型基板上晶圆封裝(FOCoS)。FOCoS是一种安装在高引脚数球栅阵列 (BGA) 基板上的扇出封装倒装芯片技术,扇出封装具有重新分布层(RDL),允许在多个芯片之间构建更短芯片到芯片 (D2D) 互连,倒装芯片安装到BGA基板上。 FOCoS-CF由两个面朝下的ASIC小芯片组成,通过Cu通孔直接与RDL连接,硅裸片和扇出RDL之间没有微凸块。FOCoS-CL中,ASIC裸片和两个HBM通过RDL和Cu微凸块连接。FOCoS-Bridge使用硅桥芯片嵌入扇出RDL层连通ASIC和HBM。为了赶上先进封装热潮,日月光投控财务长董宏思指出,面对当前市场的需求,将增加2024年的资本支出,在2023年15亿美元的基础上提高一倍。其中,封装支出占比约53%,测试支出占比约38%。先进封装是投资重点。 03中国大陆封测厂加紧跟上 在先进封装发展如火如荼的当下,中国大陆相关企业也在开发相关技术,争取跟上产业发展脚步。长电科技是中国大陆封装行业的领军企业,该公司正在开发XDFOI技术(2.5D超高密扇出型封装)。 该封装技术可以将不同功能的裸片整合在系统封装内,特别适用于对集成度和算力要求较高的应用,如FPGA、CPU、GPU和5G网络芯片。XDFOI技术不仅可以提高集成度,还可以提升性能和功率效率。通富微电的VISionS技术能够实现多层布线,将不同工艺和功能的Chiplet小芯片高密度集成,提供晶圆级和基板级封装解决方案。该公司已经实现了堆叠NAND Flash和LPDDR封装的量产,其3D存储封装技术处于国内领先水平。 华天科技推出了3D Matrix技术,集成了硅通孔、eSiFo(Fan-out)和3D SIP等先进封装技术,Fan-out技术通过在基板上刻蚀挖槽,将芯片放置在凹槽内,再进行重新布线和封装,显著提高了封装密度和性能。此外,华为、比亚迪半导体、阿里巴巴等产业链多个环节上的企业,在封装设计、应用和市场推广等方面发挥着重要作用。