《 Nature | Article Print Share/bookmark 日本語要約 Interface dynamics and crystal phase switching in GaAs nanowires》

  • 来源专题:绿色印刷—LED
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Abstract

        Abstract• Introduction• Imaging interface and catalyst geometry• A model for interface geometry• Connecting geometry to crystal phase• Conclusions• Methods• References• Acknowledgements• Author information• Extended data figures and tables• Supplementary information

    Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.

  • 《Nature,2月24日,Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-25
    • Phase-adjusted estimation of the number of Coronavirus Disease 2019 cases in Wuhan, China Huwen Wang, Zezhou Wang, Yinqiao Dong, Ruijie Chang, Chen Xu, Xiaoyue Yu, Shuxian Zhang, Lhakpa Tsamlag, Meili Shang, Jinyan Huang, Ying Wang, Gang Xu, Tian Shen, Xinxin Zhang & Yong Cai Cell Discovery volume 6, Article number: 10 (2020) Cite this article Abstract An outbreak of clusters of viral pneumonia due to a novel coronavirus (2019-nCoV/SARS-CoV-2) happened in Wuhan, Hubei Province in China in December 2019. Since the outbreak, several groups reported estimated R0 of Coronavirus Disease 2019 (COVID-19) and generated valuable prediction for the early phase of this outbreak. After implementation of strict prevention and control measures in China, new estimation is needed. An infectious disease dynamics SEIR (Susceptible, Exposed, Infectious, and Removed) model was applied to estimate the epidemic trend in Wuhan, China under two assumptions of Rt. In the first assumption, Rt was assumed to maintain over 1. The estimated number of infections would continue to increase throughout February without any indication of dropping with Rt = 1.9, 2.6, or 3.1. The number of infections would reach 11,044, 70,258, and 227,989, respectively, by 29 February 2020. In the second assumption, Rt was assumed to gradually decrease at different phases from high level of transmission (Rt = 3.1, 2.6, and 1.9) to below 1 (Rt = 0.9 or 0.5) owing to increasingly implemented public health intervention. Several phases were divided by the dates when various levels of prevention and control measures were taken in effect in Wuhan. The estimated number of infections would reach the peak in late February, which is 58,077–84,520 or 55,869–81,393. Whether or not the peak of the number of infections would occur in February 2020 may be an important index for evaluating the sufficiency of the current measures taken in China. Regardless of the occurrence of the peak, the currently strict measures in Wuhan should be continuously implemented and necessary strict public health measures should be applied in other locations in China with high number of COVID-19 cases, in order to reduce Rt to an ideal level and control the infection.
  • 《Nature,3月11日,SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-03-15
    • SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface Federico Bertoglio, Doris Meier, […]Michael Hust Nature Communications volume 12, Article number: 1577 (2021) Abstract COVID-19 is a severe acute respiratory disease caused by SARS-CoV-2, a new recently emerged sarbecovirus. This virus uses the human ACE2 enzyme as receptor for cell entry, recognizing it with the receptor binding domain (RBD) of the S1 subunit of the viral spike protein. We present the use of phage display to select anti-SARS-CoV-2 spike antibodies from the human naïve antibody gene libraries HAL9/10 and subsequent identification of 309 unique fully human antibodies against S1. 17 antibodies are binding to the RBD, showing inhibition of spike binding to cells expressing ACE2 as scFv-Fc and neutralize active SARS-CoV-2 virus infection of VeroE6 cells. The antibody STE73-2E9 is showing neutralization of active SARS-CoV-2 as IgG and is binding to the ACE2-RBD interface. Thus, universal libraries from healthy human donors offer the advantage that antibodies can be generated quickly and independent from the availability of material from recovering patients in a pandemic situation.