《无水制造MXenes的方法可能意味着这种有前途的纳米材料的新用途》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2020-03-20
  • 德雷塞尔大学(Drexel University)的研究人员在制造了首个被广泛研究的纳米材料家族MXenes样品十年后,发现了一种不同的制造原子厚度材料的方法,这为使用它提供了许多新的机会。这项新发现将水从氙气制造过程中去除,这意味着这种材料可以用于水是污染物或妨碍性能的应用,如电池电极和下一代太阳能电池。

    最近发表在《化学》(Chem)杂志上的这一发现,为化学蚀刻液提供了一种新配方,这种蚀刻液将陶瓷前驱体材料(称为MAX相)的各层剥离,从而生成二维层状材料MXene。

    德雷克塞尔工程学院的著名教授米歇尔·巴索姆博士说:“水已经被用在制造微氙的过程中来稀释蚀刻酸,并作为一种溶剂来中和反应,但在最终产品中不总是希望有它的痕迹。”“一段时间以来,我们一直在探索其他的蚀刻剂来达到最大p相,现在我们已经找到了合适的化学组合来完成这项工作。”

    MXenes作为一种多功能的、耐用的、导电的材料,最近引起了人们的注意,它有一天可能会改进能源储存技术,使功能性纺织品成为可能,并改善电信技术。

    通常,他们是由使用浓酸,解除从马克斯阶段材料原子层,然后用水洗,留下片的二维层状材料,可以压制成薄膜芯片和电池电极,或用于喷漆天线和外套设备屏蔽电磁干扰。

    Barsoum和他的同事报道了这一过程,他们使用一种有机溶剂和二氟化氢铵(一种常用来蚀刻玻璃的化学物质)来蚀刻最大相位。这种溶液进行蚀刻,部分原因是它分解成氢氟酸,但它不需要水来稀释或洗去蚀刻过程中的副产品。

    以这种方式制造MXenes改变了它们的内部化学结构,使它们更适合用于某些类型的电池和太阳能电池——在这些电池和太阳能电池中,水可以减缓储存和/或转换能量的化学反应,在某些情况下甚至会导致腐蚀。

    德雷塞尔工程学院的博士研究员Varun Natu是这篇论文的第一作者,他说:“MXenes显示出了改进储能设备的巨大潜力,但这一发现使它们更有希望。”“众所周知,使用有机电解质的锂离子电池或钠离子电池中,即使是微量的水也会对其性能造成损害。在这项研究中,我们发现以碳酸丙烯酯为原料合成的MXene薄膜,在钠离子电池中作为阳极进行测试时,其容量几乎是在水中蚀刻剂的两倍。此外,MXenes现在可以很容易地与在水中降解的物质结合,比如某些聚合物、量子点和钙钛矿。”

    除了为这些应用提供更好的MXenes设备外,新的工艺还允许蚀刻液被回收和再利用。随着研究人员和公司寻找最有效的方法来扩大生产过程,这可能证明是有价值的。

    参与这项工作的研究人员,包括工程学院副教授Vibha Kalra博士,一直在探索通过开发新型电极来提高电池性能和安全性的方法。这一发现可能会带来新的选择来承担这些努力,以及发展德雷克塞尔的身体的MXene研究。

    这一发现开辟了一个新的研究领域:MXenes的非水蚀刻。我们相信这项工作不仅对MXene社区有用,而且对整个材料科学领域的研究人员也有用,”Barsoum说。

    ——文章发布于2020年3月13日

相关报告
  • 《Science:重大突破!CRISPR-Cas系统新用途!开发出可编程的CRISPR反应性智能材料》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-08-27
    • 2019年8月26日讯/生物谷BIOON/---CRISPR-Cas系统已成为科学家们在不断增加的有机体中研究基因的首选工具,并且正被用于开发潜在地校正基因组中单个核苷酸位点上的缺陷的新型基因疗法。它也被用于正在进行的诊断方法中,用于检测患者体内的病原体和致病突变。 如今,在一项新的研究中,来自美国哈佛大学威斯生物启发工程研究所和麻省理工学院的研究人员展示了将CRISPR用作新型刺激反应性“智能(smart)”材料的控制元件。一旦被特定的天然的或用户定义的DNA刺激物激活,一种CRISPR-Cas酶就能够让多种智能材料释放出自身结合的货物,比如染料和活性酶,改变它们的结构来部署包埋的纳米颗粒和活细胞,或者调节电路从而将生物信号转化为电信号。相关研究结果发表在2019年8月23日的Science期刊上,论文标题为“Programmable CRISPR-responsive smart materials”。 论文通讯作者、哈佛大学威斯生物启发工程研究所创始核心学院成员James Collins博士说,“我们的研究表明CRISPR的力量可以在实验室之外用于控制DNA反应性材料的行为。我们开发了一系列具有不同能力的材料,这就突显了可编程的CRISPR反应性智能材料(CRISPR-responsive smart material)所支持的应用范围。这些应用包括新型治疗诊断策略、即时诊断以及对流行病爆发和环境危害进行的区域监测。” CRISPR-Cas系统因其能够利用短的互补性向导RNA(gRNA)在基因组中找到几乎任何靶序列并且能够以手术精确度切割和修复DNA双链而获得了巨大的声誉。在这项新的研究中,这些研究人员使用了一种来自毛螺菌(Lachnospiraceae)的称为Cas12a的Cas酶变体,这种酶变体具有识别和切割特定DNA序列的能力,但是,重要的是,经这种切割事件激活后,它接着以每秒大约1250次的周转速率非特异性地切割特定DNA序列附近的单链DNA。 论文共同第一作者、麻省理工学院研究生Max English说,“我们将单链靶DNA序列整合到聚合物材料中,要么作为悬垂货物的锚点,要么作为维持材料基本完整性的结构元件,并且能够通过提供Cas12a和一种作为刺激物的特定gRNA来控制不同的材料行为。” CRISPR反应性材料用于小型货物递送 这些研究人员通过双链DNA锚定序列将不同的有效载荷附着到一种所谓的聚(乙二醇)水凝胶材料上。论文共同第一作者、Collins团队博士后研究员Helena de Puig博士说,“在互补的gRNA存在下,附近的Cas12a酶靶向这些锚定序列,随后让它们遭受降解。因此,我们可以释放有效负载,比如荧光分子和酶,这种释放速率取决于gRNA/靶DNA的相对亲和力,以及硬编码到水凝胶中的特性,比如它们的孔径和与水凝胶材料交联在一起的靶向锚定序列的密度。”他们认为,这种方法可用于开发具有诊断能力的材料,也可用于环境监测。 刺激后释放包埋的纳米颗粒和细胞 这些研究人员在在更大的范围内研究了他们的方法,以促使包埋纳米颗粒和活细胞的聚丙烯酰胺(polyacrylamide, PA)水凝胶发生结构变化。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“在这项新的研究中,我们利用Cas12a靶序列将PA链彼此交联在一起,从而起到结构元件的作用。通过触发Cas12a活性移除交联剂可促进整个水凝胶基质发生机械变化,从而允许金纳米颗粒和人原代细胞释放出来。论文共同第一作者、Collins团队的研究生Raphael Gayet说,“这种方法可用于将细胞释放到组织支架中。” 生物材料作为保险丝和可控阀 在另一种不同的方向上,Collins和他的团队设计了CRISPR反应性智能材料,可以作为保险丝和调节流体通过的可控阀。这些研究人员利用炭黑(一种良好的电导体)和随机单链DNA片段制成的纳米颗粒混合物覆盖电极,并用含有Cas12a和特定双链靶DNA的溶液包围这些电极。论文共同作者、Collins 团队成员Nicolaas Angenent-Mari 说,“这种材料本身就能够让电流在电极之间流动。然而,当我们触发Cas12a依赖性的嵌入DNA降解时,这种材料受到破坏,从而导致电流中断。” 在纸基微流体装置中,这些研究人员组装了一叠折叠的微型垫,每个微型垫都具有特定的功能。在Cas12a特异性双链DNA触发剂不存在或存在的情况下,他们让与DNA交联在一起的PA水凝胶与Cas12a发生预反应,并用它覆盖中间垫。然而,这种水凝胶仅在没有Cas12a触发的DNA的情况下形成,并且当添加到中间垫上时,这会堵塞它的孔。这接着阻断了携带电解质的缓冲液从这叠微型垫的顶部流动到电极所在的底部。 相反之下,Cas12a触发的DNA的存在阻止了这种水凝胶发生的交联,从而使得这种缓冲液流动并在电极上产生电流,因而基本上发挥着电阻器的作用。论文共同第一作者Luis Soenksen说,“通过这种方法,我们将对应于埃博拉病毒特异性RNA的DNA检测与电信号相结合在一起,甚至可以利用偶联RFID天线实时传输信号。” 哈佛大学威斯生物启发工程研究所创始主任Donald Ingber博士说,“Collins及其团队在威斯生物启发工程研究所的活细胞平台上开展的这项突破性研究展示了CRISPR技术在全新领域(从诊断、治疗到生物电子学)的价值,这标志着这种生物启发技术为生物医学发展带来的又一个鼓舞人心的转折点。”
  • 《石墨烯注入碳基纳米材料用于耐用电池》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-02
    • 布朗大学的一个研究小组发现了一种方法,可以将用于制造固态锂离子电池的陶瓷材料的韧性提高一倍。《Matter》杂志描述的这一策略可能有助于将固态电池推向大众市场。 “人们对用陶瓷材料取代现有电池中的电解液非常感兴趣,因为它们更安全,而且能提供更高的能量密度,”布朗工程学院的博士后研究员、这项研究的第一作者Christos Athanasiou说。到目前为止,对固体电解质的研究主要集中在优化它们的化学性质上。在这项工作中,我们将重点放在机械性能上,希望能使它们更安全、更实用、更广泛地使用。” 电解液是电池正极和负极之间的屏障,锂离子在充电或放电时通过电解液流动。液态电解质工作得很好——它们被发现存在于今天使用的大多数电池中——但它们有一些问题。在大电流下,电解液内部会形成微小的锂金属丝,从而导致电池短路。由于液体电解质也是高度易燃的,这些短裤可能导致火灾。 固体陶瓷电解质是不易燃的,有证据表明它们可以防止锂丝的形成,而锂丝可以使电池在更高的电流下工作。然而,陶瓷是高脆性材料,在制造和使用过程中可能会断裂。 在这项新研究中,研究人员想知道,在陶瓷中注入石墨烯——一种超强碳基纳米材料——能否提高材料的断裂韧性(一种材料承受开裂而不崩解的能力),同时保持电解质功能所需的电子特性。 阿萨纳苏与布朗大学工程学教授布莱恩·谢尔登和尼廷·帕杜尔合作,他们多年来一直在使用纳米材料来加固用于航空航天工业的陶瓷。在这项工作中,研究人员制造了氧化石墨烯的微小血小板,将其与一种叫做LATP的陶瓷粉末混合,然后将混合物加热以形成一种陶瓷-石墨烯复合材料。 对复合材料的力学测试表明,与单独使用陶瓷相比,复合材料的韧性增加了两倍以上。“发生的情况是,当材料开始开裂时,石墨烯血小板将破裂的表面粘合在一起,因此需要更多的能量来维持裂纹的运行,”Athanasiou说。 实验还表明,石墨烯不会影响材料的电学性能。关键是要确保在陶瓷中加入适量的石墨烯。而石墨烯过少则无法达到增韧效果。过多会导致材料导电,这在电解质中是不需要的。 “你希望电解质能传导离子,而不是电,”帕图尔说。“石墨烯是一种良好的导电体,因此人们可能会认为在电解液中加入导体是在搬起石头砸自己的脚。”但如果我们将浓度保持在足够低的水平,就可以阻止石墨烯导电,同时我们仍能获得结构上的好处。” 综合来看,这些结果表明,纳米复合材料可以提供一条道路,使力学性能更安全的固体电解质用于日常应用。该小组计划继续改进这种材料,尝试石墨烯以外的纳米材料和不同类型的陶瓷电解质。 “据我们所知,这是迄今为止所制造的最坚硬的固态电解质,”Sheldon说。“我认为,我们所展示的是,在电池应用中使用这些复合材料有很大的前景。”