《宁波材料所在催化果糖脱水制5-羟甲基糠醛技术方面取得新进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-06-20
  • 来源:中国科学院宁波材料所

    随着化石能源的日益衰竭、能源需求的不断增加以及环境污染的日趋严重,亟需寻找一种可再生资源来替代化石资源。生物质资源具有储量大、可再生、环境友好等优点,被认为是化石资源的理想替代品,其开发与利用受到了广泛的关注。5-羟甲基糠醛(HMF,5-hydroxymethylfurfural)是一种重要的生物质平台化合物,应用领域十分广泛。比如,HMF可以作为原料,经加氢、醚化、C-C偶联反应可制备柴油、汽油等生物基燃料,还可经氧化反应可合成2,5-呋喃二甲酸,后者可替代依赖于石油的对苯二甲酸来生产聚酯类化合物。

      当前,HMF主要是在酸性条件下由糖类(果糖、葡萄糖等)选择性脱水而得,其中以果糖为原料来生产HMF 的难度较小且易获得较高的收率。催化剂和溶剂是影响果糖脱水反应的两个重要因素。尽管水是一种廉价、环境友好的溶剂,但以纯水为溶剂会促使生成的HMF水解生成乙酰丙酸和甲酸,从而降低了HMF的收率。离子液体具有挥发性低、稳定性好、毒性低等优点,还可以有效抑制HMF的水合反应,被认为是果糖脱水制HMF反应的绿色溶剂。以分子筛为代表的固体酸催化剂具有易分离、可循环利用、低腐蚀性等优点,使其在工业上具有广泛的应用前景。然而,以ZSM-5、Beta、HY、Mordenites等分子筛催化果糖脱水反应时,HMF的收率普遍低于70%,大量副产物的存在不仅增加了产物的后续分离难度,也极易导致催化剂失活。因此,开发高效催化果糖脱水制HMF的催化剂是当前的研究热点。

      中国科学院宁波材料所非金属催化团队张建研究员、王磊研究员与呋喃类化学品团队张亚杰研究员共同合作,以具有一维孔道结构的非酸性KL分子筛作为研究对象,采用铵离子交换的方式,制备出了不同酸性的KL分子筛并将其应用于催化果糖转化制HMF反应(离子液体体系)。研究表明,酸性KL分子筛在果糖脱水反应中表现出了优异的催化性能,其中在KL-80oC-1h催化剂上获得了99.1%的HMF收率,这主要是由于该催化剂具有适宜的Brönsted酸强度促进了脱水反应的发生以及较少的Lewis酸性位抑制了聚合产物的生成。此外,该催化剂在多次套用实验中未出现明显的失活现象,具有潜在的工业应用价值。相关研究成果发表在ChemSusChem(2017, 10, 1669-1674 DOI: 10.1002/cssc.201700239)上。

      上述工作得到了国家自然科学基金委相关人才计划、青年基金、中国科学院前沿科学重点研究计划、宁波市自然科学基金项目等项目的资助。

      KL分子筛的酸性表征(NH3-TPD (a), Py-IR (b))和催化果糖转化性能(果糖转化率(c), HMF收率(d))

      KL-80oC-1分子筛催化剂的套用实验

相关报告
  • 《宁波材料所在5-羟甲基糠醛规模化生产工艺上取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-01-11
    • 随着全球经济的快速发展,石油资源逐渐消耗与高性能化学品需求不断增加的矛盾日益突出,采用可再生的生物质原料替代化石原料成为化工领域的重要战略方向。我国生物质经济在短期内较为可行的发展路线是,将产能过剩或废弃生物质高效转化为附加值高、功能增益的平台化学品,逐步推动原料分散处理向中心加工聚集的规模化进程,实现生物基化学品对石油基化学品的性能补偿与部分替代。   在众多生物基化学品中,5-羟甲基糠醛(HMF)是最重要的平台化合物之一,其衍生物在精细化工、医药、可降解塑料等领域具有重大应用前景,尤其是基于呋喃二甲酸的生物基PEF聚酯已体现出优于石油基PET(聚对苯二甲酸乙二醇酯)的诸多特性。然而,自19世纪末以来,HMF低成本规模化生产一直是国际化工领域悬而未决的难题,生产规模均未突破百吨/年,主要受限于反应、分离、精制等多环节技术问题迭加。在浙江糖能科技有限公司的资助下,中国科学院宁波材料技术与工程研究所张建团队以产能过剩的果糖为原料,成功开发出具有自主知识产权的高效多相催化制取HMF工艺,率先在千吨级规模上实现了催化剂、溶剂循环套用,并完成果糖脱水反应段的万吨级示范,HMF单程摩尔产率为82%至87%。生产示范期间,中国科学院重大任务局监理专家、化学所方世壁研究员莅临现场指导工作。   本工作还得到了中国科学院重点部署项目(ZDRW-CN-2016-1)、前沿科学重点研究项目(QYZDB-SSW-JSC037)、基金委相关人才计划项目(51422212)、浙江省相关人才计划项目(LR16B030001)资助。
  • 《宁波材料所在PVDF油水分离膜材料方面取得系列新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-26
    • 随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中国科学院宁波材料所刘富研究员团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。   1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制备得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal, 2018, 334,579,王建强副研究员和吴紫阳为共同第一作者,刘富研究员为通讯作者。   2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制备了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗极端物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制备的PVDF膜,可实现水包油乳液的连续分离(通量达1700 ,分离效率>96%)(如图3)。 相关工作已经发表在Scientific Reports, 2017, 7: 14099,熊竹副研究员和林海波为共同第一作者,刘富研究员为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量最多的前100篇文章之一。   3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制备得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652 (分离效率>99%),远高于已报道数据。该方法制备过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表在Journal of Materials Chemistry A, 2018, 6, 7014-7020。浙江理工大学的吴金丹博士和硕士生丁雅杰是论文的共同第一作者,王建强副研究员、浙江理工大学王际平教授和刘富研究员为该工作的共同通讯作者。   上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中国科学院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。