《利用核能生产绿色氢》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2020-05-18
  • 美国20%的电力来自核能。这种能源经常遭到诋毁,它不产生碳排放,而且与其他任何发电站相比,它的容量系数最高,在92%的时间里产生能源。

    对探索核制氢的可能性和益处的支持不断增加,兴趣也越来越大。利用核电站产生的电和热可以生产低成本的高温电解氢(HTE)。这些电解系统利用核电站产生的热量和蒸汽,比传统电解需要的电力少得多。

    美国能源部核氢计划

    核制氢并不是最近才发展起来的。美国能源部(DOE)的核能办公室在2003年建立了核氢计划(NHI),以建立一个创新的混合能源系统,以改进制氢技术。

    核能办公室也在进行热化学水分解循环(TC)研究,通过长期技术生产氢。TC利用核能或太阳能的余热通过水分解生产氢,温室气体排放量低至零。

    NHI的另一项举措是反应器/制氢过程接口,该接口指导爱达荷州国家实验室(INL)的高温生产工厂的开发。该项目于2004年开始实施,根据美国能源部的氢计划制定了界面进展,以观察大规模生产,并确定必须解决哪些技术障碍,以确保氢的大规模生产,同时运行成本低于HTE。到目前为止,已经取得的一些成果包括:识别出与1000°C以下的温度兼容的金属和合金;建立核制氢系统测试的就绪评估系统;以及对暴露在高温下的材料进行腐蚀测试,以确定其电阻。这些激动人心的发现为潜在的大规模氢生产带来了乐观的结果。

    美国能源部先进反应堆开发项目

    2019年9月,美国能源部拨款1520万美元,用于美国先进核技术项目,该项目隶属于核能先进反应堆开发项目办公室(Office of nuclear Energy advanced Reactor Development Project)。随着更廉价的天然气和可再生能源充斥电力市场,政府指定了三条途径为提高核电部门的长期竞争力提供资金。

    其中一个途径涉及到FirstEnergy Solutions (FES)、Xcel Energy和Arizona Public Service (APS)三家核电站的制氢。通过能源部的资助,示威将在FES在俄亥俄州的Davis-Besse工厂、APS在亚利桑那州的Palo Verde工厂和明尼苏达州的Xcel核电站举行。这些项目旨在提高核能生产的氢气产量,生产供国内使用和出口到国际市场的“绿色”产品。

    其中一个项目,LWR(轻水反应堆)集成能源系统接口技术开发和示范项目,将在俄亥俄州奥克港的戴维斯-贝斯核电站引入一个电解装置。

    根据国会女议员Marcy Kaptur (OH-09),代表的地区和众议院拨款委员会主席能源和水资源开发、美国能源部资助将提供“…一个重要的角色在提高认定的生产能力可用能源的方式更经济的可持续发展,有更多的工业用途,并使认定经济长期竞争力。”

    美国能源部H2@Scale项目

    除了核能办公室,能源部的能源效率和可再生能源办公室(EERE)也在通过H2@Scale项目推进核能制氢。H2@Scale促进氢生产、运输、储存和利用的研究和开发项目,以增加能源部门的收入机会。该计划作为一个框架,通过政府共同资助的项目,加速可应用的氢技术的早期研究、开发和示范,使实验室和工业共同工作。

    H2@Scale旗下的一个项目涉及FCHEA成员Nel Hydrogen U.S.及其与Exelon公用事业公司的合作。这一合作计划将展示一座核电站的制氢设施,以便在有组织的电力市场和内部氢供应中发挥积极作用。

    核氢的国际发展

    在美国之外,国际原子能机构(IAEA)开发了氢经济评估计划(HEEP),作为氢生产的评估软件工具。该软件评估了四个最重要的制氢过程:高温和低温电解、包括S-I过程在内的热化学过程、常规电解和蒸汽重整,用于评估利用核能进行大规模制氢的经济性。

    国际上对核能制氢的兴趣也在增长。法国电力公司(EDF)有意在英国利用核电站大规模生产氢气。这家法国公司正寻求利用核能发电为电解装置提供动力,以生产氢气,以满足日益增长的氢气需求。通过EDF-led制氢到Heysham (H2H)财团,EDF展示了在英国兰开夏郡核电站通过电解设备生产清洁氢的技术可行性。

    对核制氢的研究加强了全世界建立清洁能源途径以生产既经济有效又环境安全的氢的努力。

相关报告
  • 《谷歌可能利用核能和绿色氢实现2030年零碳“登月”》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2020-09-29
    • 谷歌计划到2030年用24小时零碳能源运营其整个全球业务,这是它所谓的“最大的可持续性登月计划”,将利用大量额外的风能和太阳能,并寻求绿色氢甚至核能等新技术。 美国互联网巨头的组合表示clean-generation成本下降和技术进步意味着“24/7清洁能源的承诺很快就会触手可及”,因为它试图超越2017年的里程碑时匹配与购买可再生能源的全球总能耗。 但谷歌表示,这掩盖了其数据中心和世界各地其他运营机构使用清洁能源水平的巨大差异,以及在风力和太阳能发电机无法提供电力时,利用碳排放源来填补电力供应缺口的持续需求。 该公司在公布新目标时表示:“实现24/7无碳能源意味着我们将在每个电网上每小时使用清洁能源——完全消除与谷歌用电相关的碳排放。”该公司补充说,这“并不容易”。 大公司参与“清洁能源军备竞赛”:谷歌 阅读更多 谷歌已经是世界上最大的可再生能源企业购买者,合同中的风能和太阳能发电量为550万千瓦。 这家科技巨头声称,它将在其主要地区帮助刺激500万千瓦和50亿美元的新无碳能源投资,以帮助实现2030年的目标。 实现这一目标将包括更多的“混合”购买风能和太阳能——使这两种关键的可再生能源能够在夜间和白天结合它们更强的特性——对电池存储设施的投资,以及更多地使用机器学习来提高可再生发电的效率。 谷歌还表示,它将超越风能和太阳能。 “为了在土地或可再生资源有限的地区实现我们的目标,或者为了解决风能和阳光的季节性变化,我们将探索从新兴工具中获取能源的机会,如先进的核能、增温地热、绿色氢、长期存储,或者碳捕获和存储,”它说。 新一代灵活、小规模的核技术被一些人吹捧为能源转型的关键推动者,因为它们能够提供基本负载无碳能源,作为可再生能源的后备。 “通过寻求成为这些新技术和其他新技术的早期采用者,谷歌可以做我们帮助风能和太阳能做的事情:加速学习曲线,降低成本,并使世界更容易获得应对气候变化迫切需要的工具。” “这是我们最大的可持续性登月计划,具有巨大的实践和技术复杂性。我们是第一家这样做的大公司,我们的目标是成为第一家实现这一目标的公司,”谷歌首席执行官桑达尔·皮查伊说。
  • 《弗劳恩霍夫IGB利用工业废水生产绿色氢气》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-15
    • 弗劳恩霍夫(Fraunhofer)界面工程与生物技术研究所(IGB)在德国启动了一个示范生物精炼厂,在可持续能源生产方面取得了重大飞跃。该创新工厂位于巴登-符腾堡州莱茵费尔登的赢创工业基地,利用工业废水和残余材料生产绿色氢气和有机原料。该过程涉及两种相互关联的生物技术,标志着一种开创性方法。  8月3日,环境国务秘书安德烈·鲍曼博士在莱茵费尔登(巴登)开设了SmartBioH2-BW示范工厂。作为弗劳恩霍夫界面工程和生物技术研究所IGB协调项目的一部分,该生物精炼厂在赢创的工业基地建造。它利用冲洗水和生产过程中产生的残余物质,通过两个耦合的生物技术过程生产“绿色”氢气和有机原料。测试运行现已在实际条件下开始。   废物和废水是一种迄今为止在世界范围内很少得到利用的资源。巴登-符腾堡州希望通过资助项目“生物经济——从废物和废水中提取原料的生物精炼厂——Bio-Ab-Cycling”来改变这种状况。自2021年10月以来,巴登-符腾堡州环境、气候和能源部一直在利用国家资金和欧洲区域发展基金(ERDF)的资金支持模块化生物精炼厂的建设,以测试如何利用可持续生物经济从废物和废水中回收高质量的原材料。   该工厂已经在赢创位于莱茵费尔登的厂房内运行了几个星期。赢创工业股份有限公司(Evonik Industries AG)是全球最大的特种化学品制造商之一。赢创在巴登南部的工厂生产过氧化氢等产品,过氧化氢被用作消毒剂,例如酸奶杯。这和工厂的其他生产过程一样,都需要氢气,该公司几十年来一直在现场用天然气生产氢气。 生物精炼厂的智能耦合生物技术   该生物精炼厂由位于斯图加特的弗劳恩霍夫界面工程和生物技术研究所IGB设计、规划和建造。它由两个耦合的过程模块组成,通过生物技术生产氢,包括:紫色细菌的发酵暗光合作用和微藻的两阶段过程。   “通过智能地将这两个过程结合到一个联合生物炼制概念中,将有可能利用现场生产中产生的工业固体和液体废物流,这些废物以前必须进行昂贵的处理,并且没有作为原材料产出,以生产未来的能源氢和其他增值生物基产品,”弗劳恩霍夫IGB副主任兼该项目的协调员Schlie?mann说。   第一步是调查该地点废物流的确切组成,以及这些生物是否真的能处理它们。莱茵费尔登的液体废物流包括冲洗水,用于清洁生产设施。它们含有大量乙醇。“可以想象,漂洗水中含有对细菌和微藻具有毒性或抑制作用的其他物质,”Schlie?mann解释说。因此,首先在弗劳恩霍夫IGB的实验室条件下,用赢创的废物流分别测试了这些过程,然后扩大到更大的规模。   “我们的分析表明,冲洗水中不仅含有乙醇,还含有其他醇类和合成产物的残留物。然而,这些并不影响紫色细菌或微藻的生长,”Schlie?mann说。   2024年7月,两个生物工艺模块被运送到莱茵费尔登的工厂并投入运行。现在流程单元耦合在一起,可以在实际条件下开始演示操作。   在生物炼制的第一阶段,使用了紫色细菌红螺旋菌(Rhodospirillum rubrum),它可以在没有光线的情况下,利用一种新的发酵方式——暗光合作用,从各种碳基质中生产氢气。在莱茵费尔登,紫色细菌利用冲洗水中的乙醇作为碳基质和能量来源。   为了确保足够的生长和氢的合成,必须调整发酵培养基的组成,正如斯图加特实验室已经证明的那样。然后,细菌不仅产生令人垂涎的氢,而且还产生其他可用的产品,例如类胡萝卜素,化妆品的脂溶性色素,或生物塑料聚羟基烷酸酯(PHA),以及作为副产品的二氧化碳(CO2)。“由于紫色细菌的产氢酶对氧气非常敏感,在发酵过程中精确控制氧气含量是一项挑战,”Fraunhofer IGB生物工艺开发负责人Susanne Zibek补充道。   微藻结合副产物CO2   为了避免向大气中排放CO2,在进一步的步骤中,CO2被送入为此目的而连接的微藻工厂。这是因为光合作用生长的微藻需要二氧化碳来建立生物量或储存产品——就像绿色植物一样——而且只需要光和营养。   在SmartBioH2示范工厂中,名为小球藻(Chlorella sorokiniana)的微藻在LED照明的紧凑型光生物反应器中培养。该反应器的特点是自动化程度高,在小面积内提供大量的体积。该过程的操作方式是微藻从产生的二氧化碳中产生淀粉作为可用产品。所需的营养物质来自莱茵费尔登的第二种废物流,这次是以固体形式存在的:氯化铵。   微藻在一定条件下也能产生氢气。它们利用光能将水分解成氢和氧。IGB藻类生物技术负责人Ulrike Schmid-Staiger博士解释说:“为了从技术上使用这个过程,产生的氧气必须不断地从系统中去除,因为它抑制了藻类细胞的产氢效率。为此目的开发的一种全新的光生物反应器将在几周内集成到生物精炼厂中,以进一步提高生物氢的总体产量。”