《宁波材料所在医学影像分割和树状结构重建领域取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-03-14
  • 基于U-Net的深度学习分割框架已经被广泛应用于医学图像处理中,但U-Net网络中,连续的池化操作以及带有步幅的卷积运算会导致图像中部分细节信息的丢失。树状结构的拓扑建立,对识别和区分单个血管和神经纤维分支至关重要,并能反映出解剖学上不同树状结构的连通性。当两个或者更多的线状结构交叉或者重叠时,现有的拓扑重建方法很难准确判断连接关系。   针对以上问题,近期,中国科学院宁波材料技术与工程研究所所属慈溪医工所医学影像事业部(iMED)程骏团队和赵一天团队,分别提出了一种基于上下文编码网络(context encoder network,简称CE-Net)的医学影像分割方法和基于优势集的树状结构拓扑重建方法。   程骏团队提出,可通过一种上下文编码网络(context encoder network,简称CE-Net),在医学图像分割中获取高阶的语义特征并保留更多的细节信息。CE-Net主要包括三个主要组件:特征编码器模块(Encoder)、上下文提取器(context Extractor)和特征解码器模块(Decoder)。实验结果表明,该方法在视盘分割、血管检测、肺分割、细胞轮廓分割、视网膜光学相干断层扫描分割等医学影像处理方面,分割性能均优于原始的U-Net,并取得了目前最优的结果。该医学图像分割算法已被领域顶级期刊IEEE Transaction on Medical Imaging(TMI)(DOI:10.1109/TMI.2019.2903562)收录。   赵一天团队提出了一种基于优势集的拓扑重建方法,该方法创新性地结合了优势集和SSIM相似度度量,充分考虑了树状结构的对比度及其几何特性,并分别在局部以及全局范围中来表示曲线结构的特征,将拓扑结构的重建问题转化为数学上的聚类问题,采用优势集实现结构相似性的聚类。该方法分别在视网膜血管、脑神经元以及树根结构中做了验证试验。结果表明,重建精度高于领域内现有的相关工作,目前该工作相关内容已被计算机视觉和人工智能的顶级会议International Conference on Computer Vision and Pattern Recogintion(CVPR’2019)收录。

相关报告
  • 《宁波材料所在单原子催化领域取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-28
    • 金属单原子催化剂因其具有原子级分散的金属活性中心,表现出极其优异的催化活性和最大的原子使用效率。自2011年中国科学院大连化学物理研究所张涛院士提出单原子催化的概念以来,金属单原子催化剂已经迅速成为了催化领域的研究前沿和热点。目前制备金属单原子催化剂的策略主要有液相浸渍、原子层沉积、金属氢氧化物/聚合物核壳结构策略和光电化学策略等。然而,这些方法只适用于特定的某一类金属单原子的制备,并未扩展成普适性的方法。至今金属单原子催化剂的制备仍然是一大挑战,这主要是因为单原子的高表面能导致其容易聚集成纳米颗粒。所以,为了进一步促进金属单原子催化剂的广泛应用,亟需开发先进的制备技术,特别是具有普适性的制备技术。   针对这一现状,中国科学院宁波材料技术与工程研究所陈亮研究员团队基于金属有机框架材料提出了一种普适性的单原子催化剂制备方法:选择具有联吡啶基团的Zr基金属有机框架材料(如UiO(bpdc)),通过后处理修饰方法将金属盐前驱体配位在到联吡啶基团上,然后在惰性气氛下进行碳化并酸刻蚀去除ZrO2纳米颗粒,从而得到金属单原子催化剂。联吡啶具有活泼的N位点,可以将金属离子锚定在有机配体上,有效防止在高温碳化过程金属离子的聚集并在碳化过程优先与N形成化学键。本方法的技术路线简单、具有普适性,且可以避免生成杂相。基于此,林贻超副研究员成功制备了Fe、Co、Ni、Cu等多种单原子催化剂,并通过同步辐射近边吸收与球差电镜等表征方法验证。而近边吸收拟合结果和穆斯保尔谱测试表明该方法所制备的金属单原子配位数为5,与以往文献报导的四配位或二配位金属单原子有较大区别。该研究团队还以Fe单原子催化剂为例,研究了其在电催化氧还原反应(ORR)中的应用。结果表明Fe单原子具有非常优异的ORR性能,在0.1M KOH中,其半坡电位为0.89V,优于商业化Pt/C催化剂;密度泛函理论计算则揭示了Fe单原子的高ORR活性来源于其特殊的五配位结构。   相关结果近日以“Fabricating Single-atom Catalysts from Chelating Metal in Open Frameworks”为题发表在Advanced Materials期刊上(2019, 1808193,https://onlinelibrary.wiley.com/doi/10.1002/adma.201808193)。该工作得到了国家重点研发计划课题与自然科学基金委面上项目的大力支持,同步辐射实验得到了中国科学院上海应物所与上海光源的大力支持,计算部分得到了人工微结构科学与技术协同创新中心高性能计算中心的支持。
  • 《宁波材料所在高阻隔生物可降解聚酯材料领域取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-14
    • 由不可降解塑料造成的“白色污染”已经蔓延到地球上的每一个角落。据报道,全世界每年使用的塑料袋数量多达5万亿个,如果将它们并排展开,可以覆盖相当于2个法国的面积。然而迄今为止,世界上生产的90亿吨塑料中,只有9%被回收利用,剩余的都被扔进了填埋场、垃圾场或自然环境中。发展生物基生物可降解材料,不仅可以从根本上解决“白色污染”问题,还可以减少材料产业对石油的消耗,缓解石化资源压力。石油基PBAT聚酯在可降解农用地膜、包装、塑料袋等领域有较好的应用,但其阻隔性能差、抗撕裂强度低、强度模量不足的缺陷限制其进一步发展。呋喃二甲酸基聚酯因含有呋喃环结构而展示出优异的阻隔、力学、耐热等性能被认为是最有发展前景的生物基芳香聚酯。近期,中国科学院宁波材料所生物基高分子团队的张若愚研究员与朱锦研究员以呋喃二甲酸基聚酯为基体,通过引入短链二元酸、乳酸、聚乙二醇等一系列可降解结构,在探索呋喃基共聚酯阻隔、力学、结晶、降解等性能与结构组成关系方面进行多种尝试和探究,取得了系列研究进展,为制备新型高阻隔生物可降解聚酯材料提供了新的方法和途径。   1.通过引入短链二元脂肪酸实现高阻隔可降解材料的制备   高分子材料较高的链段刚性以及较小的自由体积是确保其具有优异阻隔性能的结构基础。研究人员利用丁二酸(DMS)、丙二醇(PDO)以及呋喃二甲酸(FDCA)制备了具有潜在纺丝、包装等用途的共聚酯PPSF,其CO2和O2阻隔性能分别达到PBAT的10倍及20倍以上(European Polymer Journal 2018, 102, 101-110.)。更进一步,团队利用DMS\新戊二醇(NPG)以及FDCA制备了综合性能非常优异的共聚酯PNSF。这种共聚酯具有非常有趣的性质,即在很宽的组成范围内,其阻隔性能基本维持不变,这种性质也被称为智能阻隔性(Smart Barrier Property),如图1a(ACS Sustainable Chemistry & Engineering 2019, 7, (4), 4255-4265.)。本团队把二氧化碳来源的碳酸二甲酯(DMC)、丁二醇(BDO)、FDCA进行共聚,得到了降解性能良好且相结构均一的共聚物PBCF,如图1b。这种共聚物的特点是其机械性能可以通过热处理,在一个较大范围内进行调节,如图1c(ACS Sustainable Chemistry & Engineering 2018, 6, (6), 7488-7498.)。此外,利用环己二甲酸(CHDA)、BDO以及DMC合成了具有较强结晶能力和快速降解的PBCCE共聚酯(Polymer Chemistry 2019, DOI: 10.1039/C9PY00083F),拓展了生物可降解材料在组织工程领域的潜在应用。   2.通过引入羟基脂肪酸大幅提升芳香族聚酯的降解性能   聚乳酸(PLA)是近年来生物基、生物可降解领域研究比较热门的绿色高分子材料。乳酸作为PLA的组成单元,可以在酶催化及水解条件下发生水解,实现聚合物链段的断裂,最终实现材料降解。本团队合成含有乳酸(LA)链段的可降解共聚酯PBFLA。并且发现这种共聚酯在乳酸含量超过20%即可发生明显的水解行为。PBFLA共聚酯弹性模量超过1GPa,拉伸强度超过40MPa,断裂伸长率超过230%,具有超过大多数降解材料的强度模量,45倍于聚乳酸的拉伸韧性,如图2。此外,由于含有LA链段,这种共聚酯有望用于与PLA的共混,以制备综合性能优异的共混合金。(Ind. Eng. Chem. Res. 2018, 57, (32), 11020-11030.)。   3.通过引入聚乙二醇提升水解能力,有望用于海水降解材料   亲水性聚乙二醇(PEG)有助于提升共聚酯水解性能。本团队通过系统调控PEG分子量、质量分数等方式,发现PEG质量分数在40%以上能发生明显的中性水解行为,质量分数在20%以上发生碱性水解行为,并且发现共聚物的相分离状态可以由PEG的分子量进行调控,如图3(European Polymer Journal 2018, 106, 42-52.)。制备的聚醚酯弹性体模量均可超过100MPa,拉伸强度超过30MPa,断裂伸长率可达到500%以上,是一种力学性能优异的可降解聚醚酯弹性体材料。   以上工作得到了国家自然科学基金委(51773218),中国科学院青促会(2018338)以及科技部重点研发计划(2017YFB0303000)等项目的支持。此外,上海同步辐射光源16B线站的诸位老师在SAXS/WAXS的测试上也给予了很大的帮助。