《BioRxiv,2月1日,(第2版更新)从基因组测序数据中检测新型人类病毒》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-03
  • Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect virulence-related genes in novel agents, as we show here for the 2019-nCoV coronavirus, unknown before it caused a pneumonia outbreak in December 2019.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.01.29.925354v2
相关报告
  • 《BioRxiv,1月30日,从基因组测序数据中检测新型人类病毒》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangzx
    • 发布时间:2020-01-31
    • Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect virulence-related genes in novel agents, as we show here for the 2019-nCoV coronavirus, unknown before it caused a pneumonia outbreak in December 2019.
  • 《2月2日_基因组检测冠状病毒类型工具,用于快速鉴定和表征新型冠状病毒基因组》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-02-06
    • 1.时间:2020年2月2日 2.机构或团队:南非夸祖鲁-纳塔尔大学健康科学学院检验医学与医学科学学院,夸祖鲁-纳塔尔研究创新和测序平台;巴西米纳斯吉拉斯州联邦大学生物科学研究所细胞和分子遗传学实验室;南非艾滋病研究计划中心;华盛顿大学全球卫生系等 3.事件概要: 研究人员在bioRxiv预印版平台发表论文“Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes”。 研究指出,基因组检测(Genome Detective)是一个基于Web的用户友好型软件应用程序,可以快速,准确地从下一代测序数据集中组装所有已知的病毒基因组。此应用程序允许以FASTA格式从组装的基因组中鉴定系统发生簇和基因型。自2019年发布以来,已经为导致大规模暴发的新兴病毒进行检测,如巴西的寨卡病毒(Zika)和黄热病毒(Yellow fever virus)。该研究介绍了基因组探测冠状病毒分型工具,该工具可以准确识别在中国和世界各地分离的新型冠状病毒(2019-nCoV)序列。该工具每次提交最多可以接受2000个序列,对新的完整基因组序列的分析大约需要一分钟。该工具已对十个冠状病毒物种的数百个全基因组进行了测试和验证,并正确分类了所有与SARS相关的冠状病毒(SARSr-CoV)和所有可用于2019-nCoV的公共数据。随着疫情在全球范围内的扩展,该工具还可以跟踪新的病毒突变,这可能有助于加速新型诊断方法,药物和疫苗的开发。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://www.biorxiv.org/content/10.1101/2020.01.31.928796v1