《BioRxiv,2月1日,(第2版更新)从基因组测序数据中检测新型人类病毒》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-02-03
  • Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect virulence-related genes in novel agents, as we show here for the 2019-nCoV coronavirus, unknown before it caused a pneumonia outbreak in December 2019.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.01.29.925354v2
相关报告
  • 《BioRxiv,1月30日,从基因组测序数据中检测新型人类病毒》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangzx
    • 发布时间:2020-01-31
    • Viruses evolve extremely quickly, so reliable methods for viral host prediction are necessary to safeguard biosecurity and biosafety alike. Novel human-infecting viruses are difficult to detect with standard bioinformatics workflows. Here, we predict whether a virus can infect humans directly from next-generation sequencing reads. We show that deep neural architectures significantly outperform both shallow machine learning and standard, homology-based algorithms, cutting the error rates in half and generalizing to taxonomic units distant from those presented during training. We propose a new approach for convolutional filter visualization to disentangle the information content of each nucleotide from its contribution to the final classification decision. Nucleotide-resolution maps of the learned associations between pathogen genomes and the infectious phenotype can be used to detect virulence-related genes in novel agents, as we show here for the 2019-nCoV coronavirus, unknown before it caused a pneumonia outbreak in December 2019.
  • 《2月28日_用于快速鉴定和表征新型冠状病毒基因组的基因检测冠状病毒分型工具》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-03-02
    • 2月28日_用于快速鉴定和表征新型冠状病毒基因组的基因检测冠状病毒分型工具 1.时间:2020年2月28日 2.机构或团队:比利时Emweb bv;南非夸祖鲁纳塔尔大学健康科学学院检验医学与医学科学学院夸祖鲁-纳塔尔研究创新和测序平台;巴西米纳斯吉拉斯州联邦大学生物科学研究所细胞和分子遗传学实验室;南非艾滋病研究计划中心等 3.事件概要: Bioinformatics于2月28日出版了比利时Emweb bv和南非夸祖鲁纳塔尔大学等发表的论文“Genome Detective Coronavirus Typing Tool for rapid identification and characterization of novel coronavirus genomes”。 文章指出,Genome Detective是一个基于Web的用户友好型软件应用程序,可以基于下一代测序数据集快速准确地组装所有已知的病毒基因组。此应用程序允许以FASTA格式从组装的基因组中鉴定系统发生簇和基因型。自2019年发布以来,已经为导致大规模疫情的新兴病毒产出了许多分型工具,例如巴西的Zika和Yellow Fever Virus。 在该论文中,作者介绍了该基因检测冠状病毒分型工具,指出该工具可以准确地识别在中国和世界各地分离出的冠状病毒(SARS-CoV-2)的基因序列。该工具每次最多可以提交2,000个序列,分析一个新的全基因组序列大约需要一分钟。该工具已经过来自十种冠状病毒物种的数百个全基因组的测试和验证,并正确分类了所有与SARS相关的冠状病毒(SARSr-CoV)和所有可用于SARS-CoV-2的公共数据。随着疫情在全球范围内的蔓延,该工具还可以跟踪新的病毒突变,这可能有助于加速新型诊断剂、药物和疫苗的开发。 4.附件: 原文链接: https://academic.oup.com/bioinformatics/advance-article/doi/10.1093/bioinformatics/btaa145/5766118