【内容概述】据光行天下8月10日报道,近日,清华大学电子系方璐教授课题组与自动化系戴琼海教授课题组在智能光芯片领域取得重大进展。他们首创全前向智能光计算训练架构,研制出“太极-Ⅱ”光芯片,实现了大规模神经网络的原位光训练,为人工智能(AI)大模型探索了光训练的新路径。相关成果以《Fully forward mode training for optical neural networks》为题,发表在最新一期《自然》国际学术期刊上。
现有光神经网络的训练严重依赖GPU离线建模,并要求高度匹配的前向-反向传播模型。这对光计算系统的精准对齐提出苛刻要求,致使梯度计算难、训练规模小,禁锢了光计算的优势。 据介绍,“太极-Ⅱ”的面世,填补了智能光计算在大规模神经网络训练这一核心领域的空白。除了加速AI模型训练外,其还在高性能智能成像、高效解析拓扑光子系统等方面表现出卓越性能,为人工智能大模型、通用人工智能、复杂智能系统的高效精准训练开辟了新路径。
(文献详细内容,请看下一篇编译)