《新MXene材料》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-04-25
  • 中国科学院宁波材料技术与工程研究所(简称宁波材料所)黄庆团队,通过以“化学剪刀”辅助的化学插层策略,为精确调控MAX相和MXene材料的原子构筑提供新路径,丰富了目标物质的元素组成和微观结构。

    3月17日,相关研究以《“化学剪刀”辅助的层状过渡金属碳化物的结构编辑策略》为题发表于《科学》,宁波材料所为第一单位和通讯单位。而这个成果,来自原先被认为“失败”的一批试验。


    来自科学网

  • 原文来源:https://doi.org/10.1126/science.add5901
相关报告
  • 《宁波材料所合成出新颖二维MXene材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 发布时间:2017-04-19
    • 二维材料因其高比表面积,独特的电子结构及物理化学性质而引起人们的广泛关注。作为研究最为广泛的二维材料,石墨烯因其超高的力学强度、优异的电导率及热导率,在电化学储能,透明电极材料,及纳米复合材料等领域展现出广泛的应用前景,但本征的零带隙及单一的化学组成限制了其在场效应晶体管等领域的应用。二元及三元二维材料,如金属氧化物、层状金属硫族化合物,六方氮化硼,层状氢氧化物等体系的研究日益受到关注。二维层状过渡金属碳化物纳米片(MXenes)材料则是近年来发现的一类新型二维材料,由美国Drexel大学Michel Barsoum在此领域做了大量开拓性研究,目前该实验室已相继获得Ti3C2Tz, Ti2CTz, Ta4C3Tz, TiNbCTz, (V0.5,Cr0.5)3C2Tz, Ti3CNTz, Nb2CTz,V2CTz, Nb4C3Tz, Mo2TiC2Tz, Mo2Ti2C3Tz, Cr2TiC2Tz, , Mo2CTz, Ti4N3Tz等MXenes结构。MXenes具有高比表面积、良好的导电性和亲水性,理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。前期研究发现多种阳离子能够自发地插入到MXenes材料层间,因此在储能领域也有良好的应用前景。如已有的研究报道,Ti3C2Tz、Ti2CTz、V2CTz、Nb2CTz等可作为锂离子电池和超级电容器的电极材料,它们具有较高的比容量(可达410 mAh/g @ 1 C)和体积比电容(可达900F/cm3)以及良好的充放电循环稳定性(Science, 2013, 341, 1502-1505;Nature 2014, 516, 78-81)。因此,MXenes被认为极具发展潜力的新一代二维纳米功能材料。   正因为此,如何抢先合成出具有丰富d电子结构的过渡金属碳化物材料已成为全世界关注的焦点。目前,MXenes的制备主要是通过HF酸,NH4HF2溶液,LiF及HCl混合溶液及低共熔混合盐介质中对A位为Al的MAX相材料(为一超过70组员的材料体系)中的Al原子选择性刻蚀而得到。由于过渡金属Zr及Hf难以形成A位为Al的MAX相,因此,截止目前,关于Zr系及Hf 系的MXenes材料仍未见报道。中国科学院宁波材料所特种纤维与核能材料工程实验室采用原位反应放电等离子烧结法(SPS)获得的高纯新型Zr3Al3C5层状碳化物作为前驱体,以HF酸为蚀刻剂,选择性剥离键合较弱、易于水解的Al-C结构单元,首次获得Zr系二维MXenes材料。该工作已发表在国际期刊《Angewandte Chemie-International Edition》(128, 5092-5097, 2016)。   相比于Zr系材料,Hf系层状碳化物更难获得单一的物相,通常获得的是Hf3Al3C5、Hf3Al4C6和Hf2Al4C5三元化合物的混合相,并且由于较强的亚层间界面结合,我们发现直接以三元Hf-Al-C复合相为前驱体难以通过选择性刻蚀法获得Hf系二维材料,所得到的剥离产物主要为立方相HfC。已有的研究表明,基于这些三元相的单相固溶体相对更易获得,并且有助于改善相纯度。此外,考虑到Hf-C与Al-C片层间较强的相互作用,为进一步实现有效剥离,对单胞内的Hf-C及Al-C亚层间的界面进行调控,以弱化Hf-C与Al-C片层间的界面结合非常重要。我们基于固溶法调谐单胞内亚层的思路,在Al位引入少量Si,采用SPS方法合成了新型Hf2[Al(Si)]4C5和Hf3[Al(Si)]4C6固溶体材料,以此固溶体为前驱体,以HF酸为蚀刻剂,实现了对Al(Si)-C结构单元的选择性剥离,首次获得了Hf系二维MXenes材料。借助结合能和原子电荷计算分析,阐明了Si掺杂促进氢氟酸剥离过程的微观机制,由于Si比Al多一个价电子,掺杂替代Al原子之后,能有效减弱Hf原子层和剥离的片层Al(Si)4C4之间的界面结合,对应结合能的数值从8.60 eV直接降低到4.05 eV,因而Si的引入实现了对单胞内HfC及Al(Si)-C片层界面的有效调谐,显著弱化了界面结合,进而实现了剥离。Hf系新颖二维碳化物材料在储能、吸波和光电器件上有着潜在的应用。该实验室发现其具有优良的电化学循环储能特性,在锂电池和钠电池测试中在电流密度为200 mAg-1 循环200次后分别得到体积比容量为1567 mAh cm-3 and 504 mAh cm-3. 高体积比容量材料有望应用于发可应用于空间飞行器、移动装备等小型化供能系统中。该新型Hf系MXene二维材料工作近期已经被国际期刊《ACS Nano》(DOI: 10.1021/acsnano.7b00030)接收发表。   另外,该实验室与香港城市大学支春义教授合作,利用常规水热处理方法获得了量子点结构的Ti3C2型MXene材料。该量子点材料具有很好的荧光特性和生物相容性,有望在无稀土发光显示材料和生物标记及光热治疗等领域得到广泛应用。该工作也将在2017年的《Advanced Materials》(DOI: 10.1002/adma.201604847)期刊上出版。   目前国际上MXene材料研究方兴未艾,正逐步成为继石墨烯、二硫化钼、黑鳞等二维材料之后新的研究热点。中国科学家在Zr系和Hf系对应MXene材料合成上的突破将有力扩展人们对于二维材料认识的视野,也对于纳米能源器件和光电器件研究提供全新的素材。   以上工作得到国家自然科学基金委(21671195,11604346,51502310,21577144,91426304)和中国科学院核能材料创新团队的支持。 图 Hf系MXene材料合成示意图和原子力显微镜形貌图。   目前元素周期表过渡族金属区域业已合成出对应的MXene材料,其中Zr系和Hf系由中国科学院合成
  • 《描述广泛使用的材料的新理论》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2017-12-24
    • LiU研究员Klas Tybrandt提出了一个理论模型来解释广泛使用的导电聚合物PEDOT:PSS中离子和电子之间的耦合。该模型对印刷电子,纸张能量储存和生物电子应用具有深远的意义。 有机电子学中最常用的材料之一是导电聚合物PEDOT:PSS,并且已经发表了数万篇关于材料及其性质的科学论文。 PEDOT的主要优点之一是:PSS是可以同时传导离子和电子的,但是到目前为止,还没有一种解释这种方法如何工作的模型。我们知道这种材料有几个有用的特性,但我们不知道为什么。 Norrköping校区有机电子实验室的Soft Electronics小组的首席研究员Krk Tybrandt,已经开发了离子和电子之间相互作用的理论模型,解释了离子传输和电子传输是如何相关的。该模型已在 “科学进展”杂志上发表。