《MedRxiv,3月23日,AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-24
  • AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks

    Shuo Jin, Bo Wang, Haibo Xu, Chuan Luo, Lai Wei, Wei Zhao, Xuexue Hou, Wenshuo Ma, Zhengqing Xu, Zhuozhao Zheng, Wenbo Sun, Lan Lan, Wei Zhang, Xiangdong Mu, Chenxi Shi, Zhongxiao Wang, Jihae Lee, Zijian Jin, Minggui Lin, Hongbo Jin, Liang Zhang, Jun Guo, Benqi Zhao, Zhizhong Ren, Shuhao Wang, Zheng You, Jiahong Dong, Xinghuan Wang, Jianming Wang, Wei Xu

    doi: https://doi.org/10.1101/2020.03.19.20039354

    Abstract

    The sudden outbreak of novel coronavirus 2019 (COVID-19) increased the diagnostic burden of radiologists. In the time of an epidemic crisis, we hoped artificial intelligence (AI) to help reduce physician workload in regions with the outbreak, and improve the diagnosis accuracy for physicians before they could acquire enough experience with the new disease. Here, we present our experience in building and deploying an AI system that automatically analyzes CT images to detect COVID-19 pneumonia features. Different from conventional medical AI, we were dealing with an epidemic crisis. Working in an interdisciplinary team of over 30 people with medical and / or AI background, geographically distributed in Beijing and Wuhan, we were able to overcome a series of challenges in this particular situation and deploy the system in four weeks.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.03.19.20039354v1
相关报告
  • 《MedRxiv,4月14日,A novel high specificity COVID-19 screening method based on simple blood exams and artificial intelligence》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-04-15
    • A novel high specificity COVID-19 screening method based on simple blood exams and artificial intelligence View ORCID ProfileFelipe Soares, View ORCID ProfileAline Villavicencio, View ORCID ProfileMichel Jose Anzanello, View ORCID ProfileFlavio Sanson Fogliatto, View ORCID ProfileMarco Idiart, Mark Stevenson doi: https://doi.org/10.1101/2020.04.10.20061036 Abstract Background: The SARS-CoV-2 virus responsible for COVID-19 poses a significant challenge to healthcare systems worldwide. Despite governmental initiatives aimed at containing the spread of the disease, several countries are experiencing unmanageable increases in the demand for ICU beds, medical equipment, and larger testing capacity. Efficient COVID-19 diagnosis enables healthcare systems to provide better care for patients while protecting caregivers from the disease. However, many countries are constrained by the limited amount of test kits available, the lack of equipment and trained professionals. In the case of patients visiting emergency rooms (ERs) with a suspect of COVID-19, a prompt diagnosis can improve the outcome and even provide information for efficient hospital management. In this context, a quick, inexpensive and readily available test to perform an initial triage at ER could help to smooth patient flow, provide better patient care, and reduce the backlog of exams. Methods: In this Case-control quantitative study, we developed a strategy backed by artificial intelligence to perform an initial screening of suspect COVID-19 cases. We developed a machine learning classifier that takes widely available simple blood exams as input and predicts if that suspect case is likely to be positive (having SARS-CoV-2) or negative(not having SARS-CoV-2). Based on this initial classification, positive cases can be referred for further highly sensitive testing (e.g. CT scan, or specific antibodies). We used publicly available data from the Albert Einstein Hospital in Brazil from 5,644 patients. Focussing on using simple blood exams, a sample of 599 subjects that had the fewest missing values for 16 common exams were selected. From these 599 patients, only 81 were positive for SARS-CoV-2 (determined by RT-PCR). Based on this data, we built an artificial intelligence classification framework, ER-CoV, aiming at determining which patients were more likely to be negative for SARS-CoV-2 when visiting an ER and that were categorized as a suspect case by medical professionals. The primary goal of this investigation is to develop a classifier with high specificity and high negative predictive values, with reasonable sensitivity. Findings: We identified that our framework achieved an average specificity of 92.16% [95% CI 91.73 - 92.59] and negative predictive value (NPV) of 95.29% [95% CI 94.65% - 95.90%]. Those values are completely aligned with our goal of providing an effective low-cost system to triage suspected patients at ERs. As for sensitivity, our model achieved an average of 63.98% [95% CI 59.82% - 67.50%] and positive predictive value (PPV) of 48.00% [95% CI 44.88% - 51.56%]. An error analysis identified that, on average, 45% of the false negative results would have been hospitalized anyway, thus the model is making mistakes for severe cases that would not be overlooked, partially mitigating the fact that the test is not high-sensitive. All code for our AI model, called ER-CoV is publicly available at https://github.com/soares-f/ER-CoV. Interpretation: Based on the capacity of our model to accurately predict which cases are negative from suspected patients arriving at emergency rooms, we envision that this framework can play an important role in patient triage. Probably the most important outcome is related to testing availability, which at this point is extremely low in many countries. Considering the achieved specificity, we would reduce by at least 90% the number of SARS-CoV-2 tests performed at emergency rooms, with the chance of getting a false negative at around 5%. The second important outcome is related to patient management in hospitals. Patients predicted as positive by our framework could be immediately separated from the other patients while waiting for the results of confirmatory tests. This could reduce the spread rate inside hospitals since in many hospitals all suspected cases are kept in the same ward. In Brazil, where the data was collected, rate infection is starting to quickly spread, the lead time of a SARS-CoV-2 can be up to 2 weeks. Funding: University of Sheffield provided financial support for the Ph.D scholarship for Felipe Soares. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《AI辅助的CT图像分析系统有助于COVID-19筛查》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-04-05
    • 北京清华长庚医院等于2020年3月23日在medRxiv上发表题为“AI-assisted CT imaging analysis for COVID-19 screening: Building and deploying a medical AI system in four weeks”的文章,介绍了研究人员在构建和部署可自动分析CT图像以检测COVID-19肺炎特征的AI系统方面的经验。 文章指出,研究人员使用5家医院的1,136个训练案例(723例COVID-19阳性病例),能够在包括多种肺病在内的测试数据中实现0.974的敏感性和0.922的特异性。此外,该系统可自动突出显示所有病变区域,以便更快地进行检查。作者指出,研究人员已经在16家医院部署了该系统,每天执行1300多次筛查。