《纳米颗粒有助于实现自旋电子器件》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-03-07
  • 研究人员首次展示了一种新方法,可以比目前的商业设备快3个数量级,实现对未来计算至关重要的功能。由副教授大叶信部(Shinobu Ohya)领导的研究小组发明了一种纳米级自旋电子半导体器件,这种器件可以在特定的磁态之间以每秒数万亿次(太赫兹——THz)的速度进行部分切换,远远超过目前器件的频率。

    你很有可能在这十年的某个时候买了一台电脑或智能手机。当你看描述时,你可能已经注意到这样的设备的速度通常是用千兆赫(GHz)来测量的。目前大多数设备的频率都在几吉赫兹左右。但是进步在加速,人们正在寻找新的方法来提高我们设备的频率和性能。为此,来自东京大学工程研究生院和前沿科学研究生院的研究人员探索了自旋电子学这一新兴领域。

    “我希望我们的研究能带来基于自旋神经元的逻辑和记忆设备,”Ohya说。几十年内,人们应该会看到自旋电子智能手机和数据中心。我们将在人工智能等领域实现令人难以置信的性能提升。

    自旋电子学,又称“自旋电子学”,利用电子的一种称为自旋的固有特性来执行功能。例如,计算依赖于物理材料的可切换状态作为传递信息的一种方式。众所周知,组成二进制代码的1和0是由通信线路中的电压水平或硬盘中磁性金属的磁性状态来表示的。状态间的切换越快,设备的性能就越好。在自旋电子器件中,离散自旋磁化状态表示二进制数字。

    研究人员创造这一特性的一种方法是用一种特殊的磁性材料,用一种短而高频的太赫兹脉冲辐射,类似于机场的人体扫描仪。辐射翻转这种材料中的电子自旋——铁磁砷化锰(MnAs)——从而使其磁化速度在1皮秒内比微芯片中的晶体管开关快3个数量级。其他研究人员以前也尝试过,但是磁场对脉冲的响应只有1%,太小了,没有实际用途。

    然而,现在Ohya和他的团队成功地证明了在太赫兹脉冲作用下,MnAs纳米颗粒的磁化强度发生了更大的变化。20%的高反应意味着它在研究中更有用,并暗示了未来可能的应用。他们的技巧是利用太赫兹电磁辐射的电分量而不是磁分量。

    “到目前为止,该领域的研究人员使用铁磁金属薄膜来研究太赫兹的磁化调制,但这些薄膜阻碍了辐射的能量,”Ohya说。“相反,我们将铁磁纳米颗粒嵌入100纳米厚的半导体薄膜中。这大大减少了辐射的阻碍,使得太赫兹电场均匀地到达并翻转纳米粒子的自旋,从而使其磁化。

    ——文章发布于2019年3月5日

相关报告
  • 《新的方法有助于评估金属纳米颗粒的化学成分和结构》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-30
    • 由于分析方法的最新进展,微小材料可以在化学、生物医学和电子等领域得到开发和应用。 创新材料的分析和发展带来了无穷无尽的技术创新,在从生物工程、医学到最先进的电子技术等诸多科学领域都发挥着至关重要的作用。 在纳米尺度上对新材料的实际设计和分析有助于克服早期方法和设备的局限性,实现新的功能和无与伦比的效率水平。 金属纳米粒子也是如此,由于其广泛的应用前景,目前在当代研究中引起了广泛的关注。 一项新开发的合成技术以树状分子为模板,使科学家能够制造直径在0.5到2纳米之间的金属纳米晶体,即十亿分之一米。 这些非常微小的粒子被称为“亚纳米团簇”(subnano clusters, SNCs),它们具有非常独特的特征,比如表现出不同寻常的量子现象,这些现象极易受到团簇组成原子数量变化的影响,并且是(电)化学反应的特殊催化剂。 遗憾的是,目前在纳米尺度上用于分析粒子和材料结构的分析技术并不适用于检测SNCs。 拉曼光谱是这样一种技术,其中一个样品被激光照射和由此产生的散射光谱进行分析,以实现材料的潜在成分的分子轮廓或指纹。 传统的拉曼光谱及其变体为科学家提供了有用的工具,但它们往往灵敏度较低,因此不能用于snc。 因此,一组来自东京理工大学的研究人员,包括Kuzume博士、山本公久教授和合作者,分析了一种改进拉曼光谱测量的方法,使其能够用于SNC分析。 表面增强拉曼光谱法是一种特殊类型的拉曼光谱法,它还有另外一种细化的变体,在这种变体中,金和/或银的纳米粒子被包裹在一个薄的惰性硅胶壳中,与样品混合,以增加光学信号,从而增加方法的灵敏度。 研究人员最初从理论上确定了纳米粒子的最佳组成和尺寸,其中100纳米的银光放大器(几乎是通常所用尺寸的两倍)可以显著增加附着在多孔硅外壳上的snc信号。 这种光谱技术选择性地产生离光放大器表面很近的物质的拉曼信号。 山本公久,东京工业大学教授 为了验证这些发现,研究人员对氧化锡snc的拉曼光谱进行了量化,以检验是否可以在其结构或化学成分中找到对其在特定化学反应中神秘的高催化活性的解释。 当研究人员将他们的拉曼测量结果与理论分析和结构模拟进行比较时,他们对氧化锡SNCs的结构组成有了新的认识,从而解释了氧化锡SNCs的特异性、原子依赖的催化活性的来源。 本研究使用的方法对发展更好的亚纳米尺度科学和分析方法具有重要意义。 对物质的物理和化学性质的详细了解有助于实际应用的亚纳米材料的合理设计。高灵敏度的光谱方法将加速材料的创新,促进亚纳米科学作为一个跨学科的研究领域。 山本公久,东京工业大学教授 研究人员所展示的创新将有助于扩大亚纳米材料在催化剂、电子和生物传感器等诸多领域的应用范围。
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。