《PNAS文章:Improving our fundamental understanding of the role of aerosol?cloud interactions in the climate system》

  • 来源专题:青藏高原所信息监测服务
  • 编译者: 王婷
  • 发布时间:2016-06-02
  • 摘要:The effect of an increase in atmospheric aerosol concentrations on the distribution and radiative properties of Earth’s clouds is the most uncertain component of the overall global radiative forcing from preindustrial time. General circulation models (GCMs) are the tool for predicting future climate, but the treatment of aerosols, clouds, and aerosol−cloud radiative effects carries large uncertainties that directly affect GCM predictions, such as climate sensitivity. Predictions are hampered by the large range of scales of interaction between various components that need to be captured. Observation systems (remote sensing, in situ) are increasingly being used to constrain predictions, but significant challenges exist, to some extent because of the large range of scales and the fact that the various measuring systems tend to address different scales. Fine-scale models represent clouds, aerosols, and aerosol−cloud interactions with high fidelity but do not include interactions with the larger scale and are therefore limited from a climatic point of view. We suggest strategies for improving estimates of aerosol−cloud relationships in climate models, for new remote sensing and in situ measurements, and for quantifying and reducing model uncertainty.

相关报告
  • 《PNAS文章:On the relationship between aerosol model uncertainty and radiative forcing uncertainty》

    • 来源专题:青藏高原所信息监测服务
    • 编译者:王婷
    • 发布时间:2016-06-02
    • 摘要:The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness.
  • 《PNAS文章:Convergence on climate warming by black carbon aerosols》

    • 来源专题:青藏高原所信息监测服务
    • 编译者:王婷
    • 发布时间:2016-05-17
    • 文章摘要: Scientific interest in the climate effects of black carbon (BC) intensified with the publication of Crutzen and Birks’ (1) report dealing with the ejection of large amounts of smoke into the atmosphere after a major nuclear war. A key component of smoke is BC, which is the strongest absorber of visible solar radiation. BC solar absorption became a central issue in climate change research when a synthesis of satellite, in situ, and ground observations concluded (2) that the global solar absorption (i.e., direct radiative forcing, DRF) by atmospheric BC is as much as 0.9 W⋅m−2, second only to the CO2 DRF. BC is also an important component of air pollution, which is plaguing large parts of the world. BC results from poor combustion of fossil fuel, household burning of coal briquettes, wood, and dung as fuel for home heating and cooking practiced by 3 billion people, as well as from agricultural and natural vegetation fires. These fine BC particles thus touch on personal and cultural basics, such as how we cook our food, how we move about, and the quality of the air that we breathe. This air pollution, consisting of BC and other particles, causes worldwide an estimated 7 million premature deaths annually, with most in East and South Asia (3). BC particles are also implicated in large-scale environmental effects, such as melting of the Himalaya and other glaciers (e.g., refs. 4 and 5). BC, along with the coemitted organic aerosols, is a major source of global dimming (2), which has been linked with reduction in precipitation (6). 文章信息:2016.vol 113.no 16.4243-4245