《揭示植物组织再生机制可提高农作物种植效率》

  • 来源专题:农业科技前沿与政策咨询快报
  • 编译者: 李楠
  • 发布时间:2017-11-28
  • 人类和动物的缺陷组织或受损组织可通过干细胞再生得以修复,干细胞作为基本的未分化细胞,可分化成更具体的细胞类型并分裂出新的干细胞,以代替受损的组织细胞。植物的修复模式与此相近,只是它们的修复能力更强。尽管这一特点早在几百年前便被应用于嫁接和植物组织培养技术中,但植物损伤后细胞再生的整体机制依旧不明。

    比利时根特大学(Ghent University)VIB生命科学研究所利芬·德维尔德教授(Lieven De Veylder)带领的团队在植物中发现了一种调控组织修复能力的新型蛋白质络合物。当一个植物细胞死亡时,便会向周围细胞发出信号,激活这一蛋白质络合物,继而激发周围的细胞进行分裂,从而产生新细胞以代替死亡细胞。了解这一机制可提高农作物和可食植物的种植效率,以及其对寄生植物的抵抗力,这一发现具有重大的农业价值。这项科研成果现已发表在权威杂志《自然-植物》。

    德维尔德(De Veylder)教授表示:“许多植物及农作物并不具有快速的修复系统,例如,水稻、小麦、玉米、香蕉、洋葱等。若能完全了解这一修复系统,我们便有可能借此提高这类植物的培育效率。同时,葡萄种植和其它果树种植所采用的嫁接技术也可以得到完善,有助于降低嫁接失败概率。”事实上,1%的开花植物就是通过该研究所揭示的机制而繁育生长的移植物。此外,该研究成果也可能成为对抗寄生植物的一种新型生态策略。未来,科学家们或许可以阻断这些寄生生物的自然嫁接,并将其转化为具有高经济效益的作物。

    德维尔德教授表示:“我们的研究成果证实了科学利用进化机制的方式。毕竟,大自然已经逐渐形成了几乎可以解决所有生物问题的办法。之后,我们会探究这一研究成果是否可用于推断玉米等作物的细胞再生机制,并努力找出激活这类蛋白质络合物的信号物质。作为科学家,我们有责任全面了解这些生物进化机制,使其服务于农业生产等。”

    (编译 李楠)

相关报告
  • 《西班牙科学家揭示植物抵御真菌感染的关键机制》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 世界范围内,每年由于真菌感染产生的作物损失至少达1.25亿吨,包括水稻、小麦、玉米、大豆和马铃薯,这些粮食作物足够养活6亿人。真菌不仅在作物生长阶段、在农作物收割后的阶段,包括农产品存储期间、运输过程中或是在消费者手中等,都会带来大量损失。另外,一些真菌产生的霉菌有毒物可导致人类和动物患病、甚至死亡。农民使用真菌杀剂来防治真菌感染,但是不能保证100%有效,并且消费者需要的是不含杀虫剂的作物产品。 同人类相类似,植物也进化出防御机制来保护自身免受真菌侵袭。目前,西班牙农业基因研究中心(Centre for Research in Agricultural Genomics,CRAG)的一个团队发现了一个叫作“小型类泛素修饰蛋白调节机制(SUMOylation)”,通过调控植物中蛋白的活动从而保护植物免受真菌感染,研究结果已发表在专业期刊《分子植物》(Molecular Plant) 。该研究项目是由西班牙国家研究委员会(CSIC)研究员玛利亚·罗伊斯(Maria Lois)团队和玛利亚·可卡(María Coca)研究团队合作完成。玛利亚·罗伊斯(Maria Lois)是蛋白调节研究专家,玛利亚·可卡(María Coca)是植物真菌感染免疫反应研究专家。据玛利亚·罗伊斯解释,这一研究成果可用来开发作物防治新战略,保护农作物免受真菌感染。 小型类泛素修饰蛋白结合其他分子蛋白(SUMOylation),是诸多分子功能的一个关键过程。例如,动物的某些癌症、神经组织退化疾病就与SUMOylation缺陷有关。就植物而言,小型类泛素修饰蛋白与其他蛋白结合,能够调节植物生长以及植物自身对环境压力的反应。然而,科学家很难对SUMOylation的作用进行研究,因为完全阻滞该调节进程会在种子期造成植物死亡。为了克服这些问题,玛利亚·罗伊斯研究小组利用基因工程技术在植物中引入一个蛋白质小片段来部分阻滞SUMOylation,并且保证植物可正常生长。通过这一手段,研究人员发现,SUMOylation受到破坏的植物表现得更容易受死体营养型真菌的感染,如灰葡萄孢菌(Botrytis cinerea)和短小芽孢杆菌(Plectosphaerella cucumerina)。这两种真菌会造成植物死亡,然后以坏死的组织为食。灰葡萄孢菌是一种地域分布广泛的真菌,能感染各种植物。例如,这种真菌会致使酿酒用葡萄得贵腐病和灰霉病,影响葡萄酒质量。短小芽孢杆菌是一种重要的研究模型真菌,可感染诸如甜瓜之类的蔬菜作物。 另外,研究人员观察到,受真菌感染植物中的小型类泛素修饰蛋白很快减少了,表明作为致病机制的一部分,死体营养真菌能够使小型类泛素修饰蛋白减少。 玛利亚·罗伊斯研究团队设计的部分阻滞SUMOylation策略是整个研究项目的关键,科学家期望该策略能开展得更为深入。这一新方法能够帮助科研人员更好地了解受小型类泛素修饰蛋白调控的各种分子进程。更重要的是,这是一个很容易就能在重要的农作物上应用的工具,即便是那些基因很复杂的作物,如小麦。 小型类泛素修饰蛋白调节机制(SUMOylation)研究工作为开发更具针对性的真菌杀剂打开了新的突破口。实际上,玛利亚·罗伊斯已经开始将其在植物小型类泛素修饰蛋白研究中获取的知识应用于人类健康领域。这些研究活动获得了欧洲研究协会(ERC)和加泰隆尼亚政府(Government of Catalonia)的支持。 (编译 李楠)
  • 《植物所揭示植物愈伤组织全能性建立的转录调控机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    •     植物细胞具有很高的全能性,赋予了植物器官在活体或培养条件从头再生新的器官和完整植株的能力。基于细胞全能性发展起来的植物离体再生体系,被广泛应用于遗传转化和基因编辑等植物生物技术中。在经典的植物离体再生体系中,生长素诱导的多能性愈伤组织形成是离体再生的第一步,被认为是植物细胞获得全能性的关键过程,对于不定芽或根的从头再生是必需的。研究表明,植物根干细胞因子在生长素诱导愈伤组织形成过程中的异位激活代表了愈伤组织全能性的建立,而一些参与根发育的生长素信号因子,如ARF及其下游的LBD转录因子被证明是控制愈伤组织形成的关键因子。然而,在愈伤组织诱导过程中,哪些因子负责根干细胞因子的激活并建立愈伤组织的全能性,尚不清楚。     中国科学院植物研究所胡玉欣研究组发现,拟南芥转录因子WRKY23和bHLH041分别作为根干细胞因子的转录激活子和抑制子协同激活了愈伤组织中的根干细胞因子。研究显示,WRKY23位于生长素响应因子ARF7/19下游通过直接激活根干细胞基因PLT3和PLT7,进而间接激活其下游的根干细胞基因PLT1、PLT2和WOX5的表达;而生长素诱导的LBD积累引起了bHLH041降解,进而释放了bHLH041对PLT1、PLT2和WOX5的转录抑制。进一步的研究表明,WRKY23介导的转录激活和bHLH041介导的转录解抑制协同建立了愈伤组织的全能性和芽再生能力。该研究揭示了植物离体再生体系中愈伤组织全能性获得的转录调控机制,建立了生长素信号和细胞全能性的分子联系,结合研究组的前期工作,构建了植物离体再生过程中愈伤组织形成和全能性获得的分子框架。这一成果有助于促进基于植物离体再生的转基因和基因编辑技术的开发和应用。?10月6日,相关研究成果在线发表在《植物细胞》(The Plant Cell)上。研究工作得到国家自然科学基金和中国科学院战略性先导科技专项的支持。