《Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique》

  • 来源专题:水声领域信息监测
  • 发布时间:2016-11-14
  • The purpose of this Letter to the Editor is to demonstrate an effective method for estimating viscoelasticity based on measurements of the Rayleigh surface wave speed. It is important to identify the surface wave mode for measuring surface wave speed. A concept of start frequency of surface waves is proposed. The surface wave speeds above the start frequency should be used to estimate the viscoelasticity of tissue. The motivation was to develop a noninvasive surface wave elastography (SWE) technique for assessing skin disease by measuring skin viscoelastic properties. Using an optical based SWE system, the author generated a local harmonic vibration on the surface of phantom using an electromechanical shaker and measured the resulting surface waves on the phantom using an optical vibrometer system. The surface wave speed was measured using a phase gradient method. It was shown that different standing wave modes were generated below the start frequency because of wave reflection. However, the pure symmetric surface waves were generated from the excitation above the start frequency. Using the wave speed dispersion above the start frequency, the viscoelasticity of the phantom can be correctly estimated.

相关报告
  • 《On the relationship between the energy dissipation rate of surface-breaking waves and oceanic whitecap coverage》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:cancan
    • 发布时间:2018-12-03
    • 摘要:Wave breaking is the most important mechanism that leads to the dissipation of oceanic surface wave energy. A relationship between the energy dissipation rate associated with breaking wave whitecaps and the area of whitecap foam per unit area ocean surface is expected, but there is a lack of consensus on what form this relationship should take. Here, mathematical representations of whitecap coverage and growth-phase whitecap coverage are derived, and an energy-balance approach is used to formulate and in terms of . Both and are found to be linearly proportional to but also inversely proportional to the bubble plume penetration depth during active breaking. Since this depth can vary for breaking waves of different scales and slopes, there is likely no unique relationship between and either or as bubble plume penetration depth must also be specified. Whitecap observations from the North Atlantic are used to estimate bubble plume penetration depth as a function of wind speed and then used with measurements to compute . An estimate of the relative magnitude of to the rate of energy input from the wind to the waves is made. Above wind speeds of about 12 m s−1, is largely balanced by . At lower wind speeds the ratio quickly drops below unity with decreasing wind speed. It is proposed that sea-state-driven variability in both and bubble plume penetration depth are significant causes of variation in whitecap coverage datasets and parameterizations. 全文链接:https://journals.ametsoc.org/doi/10.1175/JPO-D-17-0124.1
  • 《Bottom attenuation estimation using sound intensity fluctuations due to mode coupling by nonlinear internal waves in shallow water》

    • 来源专题:水声领域信息监测
    • 发布时间:2016-11-25
    • Analyses of fluctuations of low frequency signals (300 ± 30 Hz) propagating in shallow water in the presence of nonlinear internal waves (NIWs) in the Shallow Water 2006 experiment are carried out. Signals were received by a vertical line array at a distance of ∼20 km from the source. A NIW train was moving totally inside of the acoustic track, and the angle between the wave front of the NIW and the acoustic track in the horizontal plane was ∼10°. It is shown that the spectrum of the sound intensity fluctuations contains peaks corresponding to the coupling of pairs of propagating modes. Analysis of spectra at different hydrophone depths, and also summed over depth allows the authors to estimate attenuation in the bottom sediments.