《苏州医工所高欣团队提出一种用于卵巢癌术前精准无创诊断的多示例卷积神经网络》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2021-12-08
  • 卵巢癌(Ovarian Cancer)是女性生殖系统最常见的恶性肿瘤之一,致死率高居妇科恶性肿瘤第一位。上皮性卵巢癌(Epithelial Ovarian Cancer,EOC),也即恶性上皮性卵巢肿瘤,是卵巢癌最主要的最主要类型,占比约为90%,其预后较差,五年生存率仅为35%。此外,还有一种属于低度恶性的交界性上皮性卵巢肿瘤(Borderline Epithelial Ovarian Tumors,BEOT),则具有较好的预后,五年生存率可达92%。二者治疗方式差异巨大,EOC患者通常需要进行全面分期手术或肿瘤细胞减灭术,切除患者全子宫及双附件;而BEOT患者通常可进行保留生育力的手术,保留子宫以及至少一部分卵巢。细针穿刺细胞学检查常用于术前肿瘤状态评估,但该方法是一种有创检查手段,可能会导致囊肿破裂,引发肿瘤细胞腹腔种植,致肿瘤扩散。因此,术前无创准确地区分二者,可为治疗方案的制定提供安全可靠的依据,避免治疗不足或过度治疗,有效提升患者预后。

      多参数核磁共振成像广泛应用于EOC与BEOT的术前无创鉴别诊断,但临床上主要依赖放射科医生的肉眼判断,主观性较大、耗时长且准确率不高(平均准确率74%-89%)。团队前期开发了一种基于影像组学的诊断方法(Journal of Magnetic Resonance Imaging,DOI: 10.1002/jmri.27084),取得了91.7%的平均准确率,但该方法依赖于人工勾画病灶靶区,无法完全克服主观、耗时等问题,临床应用受限。为此,中国科学院苏州医工所简俊明博士借助人工智能技术,提出一种基于多示例卷积神经网络的全自动诊断方法(见图1),分别构建了将T2WI,ADC及T1WI序列分别作为图像的红、绿、蓝通道进行融合的图像级多参数(EMP)模型;和使用线性回归模型将T2WI,ADC及T1WI序列各自的预测结果进行整合的决策级多参数(LMP)模型。同时,团队还将EMP和LMP模型的诊断性能与六位影像科医生组成的专家团队(从业时间介于2-13年)进行了对比。研究结果显示,EMP模型与LMP模型都具有优秀的鉴别诊断能力,且后者准确率(88.4%)略高于前者(85.5%)(见图2)。此外,相比于六位影像科医生的平均水平(准确率79.7%),团队构建的EMP和LMP模型都具有明显优势(见图3)。

      该研究的价值在于探索并验证了在不进行肿瘤区域勾画的情况下,人工智能技术在EOC与BEOT鉴别诊断上的价值。作为前期基于影像组学鉴别EOC与BEOT工作的延伸,虽然本研究中提出的模型诊断精度略有下降,但其摆脱了对病灶靶区精细勾画的依赖,客观性及稳定性更强,应用推广价值更高。借助该模型,放射科医生仅需确定肿瘤区域的最上和最下层面位置,便可实现全自动分类模型构建及预测。

      该研究受广东省重点研究发计划等项目资助,相关成果发表于Journal of Magnetic Resonance Imaging (DOI: 10.1002/jmri.28008)。

      论文链接:https://onlinelibrary.wiley.com/doi/abs/10.1002/jmri.28008

  • 原文来源:http://www.sibet.cas.cn/kxyj2020/kyjz_169572/202112/t20211206_6289068.html
相关报告
  • 《苏州医工所高欣与复旦大学强金伟合作提出基于影像的卵巢癌亚型术前精准无创鉴别方法》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-08-15
    • 卵巢癌是来源于卵巢上皮的一种恶性肿瘤,致死率居妇科癌症首位。根据发病机制和组织起源,可分为I型和II型卵巢癌,I型卵巢癌生长缓慢,就诊时多属早期,预后较好;而II型卵巢癌通常侵袭性生长,进展迅速,诊断时多属晚期,预后较差。术前无创精准鉴别二者对未来治疗方案的选择及卵巢癌患者预后的改善意义重大。   由于I型和II型卵巢癌形态学复杂,其临床特征具有较高相似性,仅凭临床医生肉眼鉴别主观性强,诊断精度低。近些年来,基于量化图像分析和人工智能技术的影像组学发展迅速,它能够很好地建立肿瘤影像与肿瘤组织病理之间的联系,广泛应用于肿瘤术前无创评估,这为I型和II型卵巢癌术前精准无创鉴别提供了一种新思路。   近日,中国科学院苏州生物医学工程技术研究所高欣团队与复旦大学附属金山医院强金伟团队合作,联合华东、华南、华北等八家三甲医院,首次开展基于MRI影像组学的卵巢癌多中心大样本研究,建立了可在术前对I型和II型卵巢癌进行无创鉴别的机器学习模型,同时在影像组学中首次使用可视化技术来对重点区域进行标识。该研究共入组294例卵巢癌患者(包括I型患者143例,II型患者151例),收集患者多参数MRI影像数据(包括T2WI-FS、DWI、ADC、CE-TIWI四个影像序列),研究团队从患者肿瘤区域提取高通量影像特征,通过影像组学方法筛选特征并构建模型。研究结果显示,所构建的影像组学模型能够有效鉴别I型和II型卵巢癌,平均准确度达到83%(图1)。   鉴于CE-T1WI扫描需要注射造影剂,而部分患者对造影剂过敏,我们仅使用T2WI-FS、DWI和ADC三个序列构建了一个轻量模型,所构建的轻量模型平均准确度也达到了81%,诊断性能无显著下降,这提示临床检查中非必要情况下,患者无需进行CE-T1WI扫描。此外,可视化结果表明,鉴别 I型和II型卵巢癌患者的重点区域位于组织疏松区或实性与囊性的交界区域(图2),该发现有望辅助术中冰冻病理切片的定位,从而减少采样误差。该成果是在前期卵巢肿瘤良恶性鉴别工作的基础上近一步实现了卵巢恶性肿瘤的亚型区分,极大地推动了卵巢肿瘤全自动诊断进程。   该研究受国家自然科学基金委等机构资助,相关成果发表于放射学权威期刊European Radiology (DOI: 10.1007/s00330-020-07091-2),其中简俊明与李勇爱是并列第一作者。   论文标题:MR image-based radiomics to differentiate type Ι and type ΙΙ epithelial ovarian cancers
  • 《苏州医工所高欣团队提出智能化黑色素细胞病变病理诊断新方法》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-02-23
    •  皮肤癌是常见的恶性肿瘤之一,全球每年新增病例高达300万且逐年上升。其中,黑色素瘤侵袭能力最强、恶性程度最高,极易发生淋巴结及血行转移,致死率高达80%,严重威胁人类健康。黑色素瘤为恶性黑色素细胞病变,而黑色素细胞病变还包括不典型与良性两种病变类型。临床上,不同类型的黑色素细胞病变的治疗方式及预后明显不同。恶性黑色素细胞病变(黑色素瘤)患者需进行外科手术切除,并联合放化疗、干扰素治疗及免疫治疗等辅助治疗方法;不典型黑色素细胞病变患者仅需外科手术将病灶切除,无需放化疗等辅助治疗,但需密切回访观察;良性黑色素细胞病变患者仅需切除病灶。因此,黑色素细胞病变早期精准诊断对手术方案的制定及患者预后的提升具有重要意义。   目前临床上黑色素细胞病变类型主要通过病理组织学分析进行确诊,这种方法依赖病理科医生的经验,主观性强、耗时且不一致率高(平均不一致率达到45.5%)。得益于全切片扫描技术的成熟,基于病理全切片图像(Whole Slide Image,WSI)的计算机辅助诊断(Computer Aided Diagnosis,CAD)可为上述问题提供解决方案。近年来,人工智能(Artificial Intelligence,AI)技术在基于病理WSI的CAD领域取得诸多突破,但现有基于AI的黑色素细胞病变病理诊断尚未实现不典型黑色素细胞病变的鉴别,而不典型黑色素细胞病变患者手术方案不同于良恶性黑色素细胞病变患者,但不典型黑色素细胞病变的组织学模式和生物学特征均与良恶性黑色素细胞病变存在部分重叠,极易与良恶性黑色素细胞病变混淆(如图1所示)。   针对上述问题,中国科学院苏州医工所联合上海交通大学医学院附属第九人民医院病理科提出一种全自动智能化黑色素细胞病变病理诊断新方法(如图2所示)。该研究共纳入3个中心711名黑色素细胞病变患者,其中良性病变374例,不典型病变119例,恶性病变218例。团队利用深度学习方法构建了图像块预测模块,输出黑色素细胞病变类型概率,实现病理组织切片局部信息客观定量的数字化解读;采用决策融合策略聚合每位黑色素细胞病变患者所有图像块的预测结果,从而构建患者诊断模块。   研究结果表明,所提方法的准确率在内外部测试集上分别达96.3%和93.0%,显著高于3名临床病理医师(2名具备10年以上病理诊断经验的高年资病理医师和1名刚完成3年规范化培训的低年资病理医师)独立诊断的准确率;此外,在所提方法的辅助下,病理医师的诊断准确率均有提升,特别是低年资病理医师的诊断准确率提升近40.0%。这项研究的价值在于探索并验证了AI技术在辅助病理医师提升黑色素细胞病变诊断准确率方面的临床应用潜力,为改善我国病理医师资源严重短缺的现状提供一种新的途径。目前,团队正在利用相关技术,开展眼科及神经病理等方面的智能化精准诊断研究,致力于构建一套面向多学科多病种的数字病理智能诊断一体化整体解决方案。   该研究受国家自然科学基金委、上海市卫生健康委员会等机构资助,相关成果发表于皮肤病学权威期刊Journal of Dermatological Treatment,苏州医工所张家意为并列第一作者。   论文链接:https://doi.org/10.1080/09546634.2022.2038772