《温廷益研究组在肿瘤氨基酸代谢调控及靶向纳米药物设计研制方面取得新进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-06-28
  • 肿瘤细胞的代谢重编程已成为多种癌症细胞的重要代谢特征,肿瘤细胞通过对不同代谢途径的调节大量合成其增殖所必须的物质,使其更适宜于在恶劣的微环境中实现快速增殖。氨基酸是细胞生长的基本营养物质,已有研究发现谷氨酰胺、丝氨酸、甘氨酸、脯氨酸和天冬氨酸的代谢调节参与肿瘤细胞增殖,揭示氨基酸代谢在肿瘤细胞中的代谢调节机制,对癌症治疗和药物设计具有重要的研究意义。

      温廷益研究组前期鉴定了人膀胱癌干细胞一条新的干性维持通路—KMT1A-GATA3-STAT3,揭示了该通路促进膀胱癌干细胞自我更新的机制(Clinical Cancer Research, 2017, 23(21), 6673-6685)。

      在此基础上,研究组继续对膀胱癌细胞中线粒体编码的丝氨酸羟甲基转移酶SHMT2的功能进行深入研究。利用CRISPR/Cas9技术敲除了SHMT2基因,发现其缺失抑制了细胞的增殖、迁移和侵袭能力,同时代谢组学分析发现胞内嘌呤和一碳单位的含量明显降低,ATP合成减少,DNA复制受到抑制,导致细胞周期延迟。同时发现添加一碳单位的供体甲酸盐,能够恢复SHMT2缺失对细胞所产生的影响,表明SHMT2介导的一碳单位对膀胱细胞增殖是必不可少的,也进一步证明了SHMT2通过维持氧化还原稳态来支持膀胱癌细胞的增殖。SHMT2缺失降低NADH/NAD、NADPH/NADP和GSH/GSSG的比值,促进细胞内活性氧(ROS)的积累,导致线粒体膜电位的丢失、细胞色素c的释放、Bcl-2家族蛋白的易位和caspase-3的激活。

      研究结果揭示了SHMT2缺失诱导ROS依赖的线粒体介导的细胞凋亡的重要机制(图1),有助于深入了解丝氨酸代谢和细胞凋亡之间的联系,并为膀胱癌治疗和药物设计提供了一个新的靶标。以SHMT2为靶标,通过筛选不同的小分子抑制剂,获得了一个具有一定抑制效果的新型小分子抑制剂,已获得授权专利1项(ZL201911058182.7)。

      上述研究结果已发表于Cancer Gene Therapy期刊,题为“SHMT2 promotes cell viability and inhibits ROS-dependent, mitochondrial-mediated apoptosis via the intrinsic signaling pathway in bladder cancer cells”,张芸副研究员为第一作者,温廷益研究员为通讯作者。

     针对肿瘤细胞的谷氨酰胺代谢特征,研究组提出了一种靶向谷氨酰胺代谢增强ROS抗癌效果的策略,并开发了一种新的化学动力学治疗(chemodynamic therapy, CDT)纳米粒子(ZIF(Fe)&CB NPs),该纳米粒子具有显著增强的癌细胞毒性和肿瘤抑制效果。以乳腺癌作为研究对象,通过转录组学分析,确定了不同亚型乳腺癌的预测性生物标志物,选择谷氨酰胺酶(GLS1)抑制剂CB-839作为阻断基底型乳腺癌谷氨酰胺酶代谢的候选药物。

      利用仿生矿化方法制备了铁掺杂的基于ZIF的纳米粒子(ZIF(Fe) NPs),进一步将CB-839装载到ZIF(Fe) NPs中,制备获得了增强型CDT多功能纳米粒子ZIF(Fe)&CB NPs,其能够将Fe2+和CB-839同步递送至肿瘤部位。Fe2+介导的芬顿反应(Fenton reaction),将肿瘤细胞内过氧化氢(H2O2)转换成羟基自由基(·OH), 导致胞内产生氧化应激效应;CB-839抑制肿瘤细胞的谷氨酰胺分解代谢,一方面减少了细胞内的抗氧化剂(谷胱甘肽、牛磺酸)的合成,增强Fe2+引起的胞内氧化应激效应;另一方面降低了核苷酸、氨基酸、脂质等的合成,导致DNA损伤修复和细胞生长增殖所需代谢物的供给不足,从而增强了CDT的细胞杀伤作用。

      体内肿瘤抑制实验进一步证实ZIF(Fe)&CB NPs增强的抗癌性能和良好的生物相容性,为基于ROS的抗癌纳米药物的开发和改进提供了一个有效策略。

      上述研究已申请专利1项,相关结果以“Zeolitic imidazolate framework-based nanoparticles for the cascade enhancement of cancer chemodynamic therapy by targeting glutamine metabolism”为题目,发表于Nanoscale期刊,博士研究生菅慧为第一作者,温廷益研究员和张芸副研究员为共同通讯作者。

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202206/t20220624_6465737.html
相关报告
  • 《微生物所温廷益研究组在氨基酸代谢重编程方面取得新进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-03-11
    • L-丝氨酸在细胞代谢过程中具有不可替代的生理作用,是多种氨基酸的合成前体。参与嘌呤、嘧啶等核酸碱基的合成;在脂肪的代谢过程中,参与磷脂酰丝氨酸、鞘磷脂等磷脂的合成和细胞膜的形成;丝氨酸还是胞内多种重要生物物质合成所需的一碳单位的直接供体。由于丝氨酸具有重要生理作用,其被广泛应用于氨基酸输液产品、免疫抑制制和肿瘤治疗等医药领域。但是由于丝氨酸处于至关重要的中间代谢位置,代谢转运速度极快,非常不容易积累,导致无法实现直接发酵法生产丝氨酸,致使丝氨酸成为我国氨基酸生产的四大瓶颈之一。 温廷益研究组前期对工业生产菌种谷氨酸棒杆菌的研究发现, L-丝氨酸对维持菌体的生长代谢至关重要,因为由丝氨酸羟甲基转移酶(SHMT)催化的丝氨酸分解为甘氨酸的反应,同时生成细胞生长所必需的一碳单位。丝氨酸积累导致一碳单位的供应不足,明显降低细胞的生长速率并减少生物量。为解除胞内丝氨酸分解代谢和细胞生长的偶联,利用基因组规模代谢网络模型模拟计算,对一碳单位代谢途径进行了重编程:即通过减弱SHMT的表达,同时将大肠杆菌中甘氨酸裂解系统引入谷氨酸棒杆菌,为细胞提供一条新的一碳单位供给途径满足细胞生长需要。新途径的引入,使细胞获得了能够再循环利用甘氨酸为前体合成一碳单位的能力,不仅满足了细胞生长的需要,维持正常的细胞形态,而且使丝氨酸的积累量显著提高。蛋白质组学分析进一步发现了细胞应对一碳单位代谢扰动的调节机制。细胞通过调节参与一碳单位代谢酶的表达,增强不同一碳单位之间的相互转化,通过一碳单位的循环实现代谢平衡,以满足细胞生长的需要。 本研究通过对一碳单位代谢途径的重编程,解决了丝氨酸代谢和细胞生长所需的一碳单位之间的供需平衡,解除了丝氨酸代谢和细胞生长的偶联,突破了抑制丝氨酸积累的瓶颈。本研究建立了设计一条新的代谢路径维持细胞生理代谢的方法,提供了一种平衡细胞生长和代谢产物积累的新策略,为调节微生物细胞代谢合成目标产物提供了新思路。 该研究已于近日在线发表于ACS Synthetic Biology,微生物所张芸副研究员为该文的第一作者,温廷益研究员为通讯作者。该研究得到中国科学院科技服务网络计划(STS计划)(KFJ-STS-QYZD-047和KFJ-EW-STS-078)和国家自然科学基金(3110074)的资助。
  • 《国家纳米科学中心丁宝全课题组在核酸自组装纳米结构的肿瘤靶向治疗方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-10-15
    • 化疗是治疗癌症的主要手段之一,顺铂和卡铂等铂类化合物作为一线化疗药物被广泛应用于癌症的临床治疗。铂类药物的抗肿瘤活性主要基于其与DNA的共价或非共价作用,这类相互作用是没有细胞选择性的,因而在利用铂药进行化疗的过程中会出现严重的毒副作用,包括肾毒性、耳毒性和神经毒性等。发展新的铂药给药策略以提高疗效并降低毒副作用的研究一直以来都广受关注。自组装的DNA纳米结构具备优异的生物相容性,并且能够在肿瘤区域富集。通过合理地设计,多种功能性配体能够精确地组装在DNA纳米结构上,从而制备出多功能性的纳米药物运输载体。   国家纳米科学中心丁宝全课题组在多功能核酸自组装结构递送小分子药物领域已获得一系列进展(J. Am. Chem. Soc. 2012, 134, 13396; ACS Nano 2014, 8, 6633; Nano Lett. 2018, 18, 3328; Angew. Chem. Int. Ed. 2018, 57, 15486)。这些多功能的DNA自组装载体实现了药物的高效递送,表现出了优异的肿瘤治疗效果。在最近发表的研究工作中,丁宝全课题组与中国科学院化学所肖海华研究员及中国科学技术大学刘扬中教授合作,首次将具备结合表皮生长因子受体功能的纳米抗体精准定位组装在DNA四面体结构上,并在纳米抗体修饰的DNA四面体中通过非共价分子间作用装载具有芳香环结构的铂药56MESS,制备具有主动靶向功能的铂药递送体系。该体系在活体水平表现出优异的肿瘤抑制效果,并极大地降低铂药的毒副作用。该研究成果以“A Nanobody-Conjugated DNA Nanoplatform for Targeted Platinum Drug Delivery”为题被Angew. Chem. Int. Ed.杂志在线发表(2019, DOI: 10.1002/anie.201909345)。   铂药基于纳米运输载体提高癌症治疗效果的研究已经被广泛报道,借助脂质体、聚合物胶束、无机纳米材料和蛋白质纳米颗粒等纳米材料,铂药能够在肿瘤部位大量富集,从而更好地发挥肿瘤抑制效果。目前,以自组装的核酸纳米材料作为铂药递送工具的研究鲜有报道。核酸自组装结构具备优异的生物相容性,非常适用于对小分子化疗药物的递送研究。选择具备优异的靶向性,稳定性和易修饰性的纳米抗体作为靶向配体,将偶联DNA的纳米抗体定位组装到DNA四面体上,使DNA纳米结构具备靶向性。再将具有芳香环结构的铂药56MESS以嵌插的方式高效负载到靶向修饰的DNA纳米结构中。在纳米抗体的作用下,该体系能够靶向过表达表皮生长因子受体的肿瘤细胞,增加了细胞对DNA纳米载体的摄取。除此之外,纳米抗体与受体的结合能够降低肿瘤细胞表面表皮生长因子受体的含量,在一定程度上进一步抑制肿瘤细胞的增殖。小鼠活体实验结果表明,该类DNA自组装给药体系表现出非常好的肿瘤抑制效果,并且极大地避免了小分子铂药严重的毒副作用。   论文由国家纳米科学中心博士生武田田与助理研究员刘建兵担任共同第一作者,通讯作者为丁宝全研究员。该研究得到了国家自然基金委和中国科学院前沿科学重点研究计划等项目的支持。      图:负载铂药的自组装DNA四面体结构,在纳米抗体引导下被肿瘤细胞摄取并在胞内释放铂药,实现肿瘤生长抑制