《走进二维碳石墨炔研究集体 开创碳材料家族新成员》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-01-24
  • 金刚石、石墨烯、碳纳米管、富勒烯……碳材料具有庞大的家族成员,一直深深吸引着化学家和材料学家。然而,此前几乎所有风靡全球的碳材料,都是由国外学者开创和引领。

    “这是我们中国人自己做的碳材料——石墨炔。”近日,在位于中国科学院化学研究所(以下简称化学所)的实验室里,中国科学院院士、中国科学院化学研究所研究员李玉良晃了晃手里的小瓶子,里面的黑色粉末发出轻微的沙沙声。

    多年来,在李玉良带领下,二维碳石墨炔研究集体在这一领域默默耕耘,在国际上首次利用化学合成的方法获得碳材料家族新成员——石墨炔,开拓了碳材料研究的新领域,在国际上产生重要影响,并一直引领该领域的发展。

    近日,李玉良和他的团队获得2021年度中国科学院杰出科技成就奖。接受《中国科学报》采访时,他表示:“我们在碳材料领域耕耘20多年,一直坚持初心,希望做出中国人自己的碳材料,让别人来跟着我们做。”

    不甘跟踪 瞄准全新碳材料

    我们知道,柔软的铅笔芯和坚硬的金刚石实际上同一种物质——碳,它们被称为碳的“同素异形体”。也就是说,同样都是碳原子,只要微观上原子与原子之间通过不同的键合方式就可以产生不同的结构,宏观上就会呈现出完全不同的性质。化学家用“杂化”来区分这样的键合方式。碳原子就有sp3、sp2和sp三种杂化方式,其中sp3杂化形成金刚石,sp2杂化形成石墨、富勒烯、碳纳米管和石墨烯等。

    20世纪70年代后期,李玉良就开始了碳材料的研究,探索制备高聚物全碳小球的方法。80 年代后期,富勒烯的发现引起国际上的关注,化学所的科研人员在朱道本院士带领下开展了 “富勒烯”相关研究。李玉良更加沉浸在碳材料的世界里。

    让李玉良萌生出做一种全新碳材料的想法是在1998年前后。“当时,自然界已经存在的碳的同素异形体中,唯独sp杂化的碳材料仍然停留在理论上,自然界中并不存在。”李玉良表示。

    同时,李玉良告诉研究团队:“应该做我们中国人自己的碳材料。”20世纪80年代到90年代,李玉良在国外工作和参加学术会议期间,让他感受最深的是,中国学者在国际上学术地位较低,根本原因是当时中国原创性成果较少,科学研究的引领性不强。“就拿碳材料来说,石墨烯、碳纳米管、富勒烯,全都是外国学者开创的。”他回忆。

    从那时起,他和团队追求的是一定要做具有中国“标签”的碳材料。“都说做基础研究是‘坐冷板凳’,是辛苦的,这是做科研必须面对的。”李玉良告诉《中国科学报》,“相比起辛苦,我更担心自己陷入一种苦恼,苦恼于短短几十年的科研生涯只能跟在人家后面做研究。”

    不惧失败 10余年坚持积累

    事实上,刚开始产生制备全新碳材料想法时,研究团队有些迷茫,因为通过合成化学的方法获得新结构的全碳材料在国际上并没有先例。

    李玉良曾在一次学术会议上从物理学家的思想中得到启发。话题是由富勒烯引发的,与会专家对这种球形材料充满期待。一些物理学家认为想要在物理上能解决问题,还得靠平面薄膜材料。“有一位物理学家找到我讨论,如果用化学方法,能不能考虑做一种类似打开富勒烯球形结构而形成全碳平面材料?”李玉良回忆起当时的情景。

    李玉良和团队受到启示,回到实验室开始尝试。不过,最初的尝试以失败告终。“我们用传统的化学方法去合成,合成到10几个碳原子的时候,由于表面张力太大,难以控制合成过程。”李玉良说。

    与此同时,相对落后的碳材料表征技术也成为最大的掣肘。研究人员用低倍的电子显微镜去观察实验做出来的碳材料全是黑乎乎的一片,更不用说看到原子级的分辨了,当然在那个时期也不具备其它更为先进的结构表征手段。

    很长一段时间里,李玉良带着团队成员做做停停,进展缓慢。不过,一次又一次失败,并没有击垮整个团队的信心。10多年来,他们没有急于出结果,而是不断在理论和实验中积累“经验值”。研究团队坚信,只要心中有目标,就要想办法把这种新材料做出来。

    另辟蹊径 做“活”新材料

    传统的化学合成方法行不通,让李玉良意识到,可能需要突破传统和模式化的方法,另辟蹊径,走出一条自己创造的路。于是,他们开辟了“共轭有机纳米结构可控生长与自组装”新方向,尝试在化学合成中把“有机”和“纳米”两个概念结合起来。用一个形象的比喻来说,这项工作的目标是让有机分子中的碳原子“自己”“裸露“出来,有序地“生长”成二维全碳网络结构。

    直到2000年后,随着科学技术的进步,高分辨电子显微镜和先进的光谱测试仪器的出现,推动碳材料表征技术向前快速发展。同时,研究团队在“有机纳米结构”方向上的耕耘也有了初步收获,先是在铜基上生长出系列有机纳米结构,经过反复实验进一步获得了具有sp杂化碳的聚丁二炔纳米线阵列,为后续合成出石墨炔奠定了基础。

    结合化学反应和可控纳米结构生长十多年来积累的丰富经验,李玉良带领团队提出了固液两相铜表面催化偶联新方法。2010年,他们终于在国际上首次通过合成化学方法获得的新的碳同素异形体,因为其中碳原子具有sp、sp2杂化,李玉良将其命名为“石墨炔”,碳材料家族从此诞生了一个新成员。

    “石墨炔是一种‘活’的碳材料。”李玉良介绍。石墨炔表面分布无限多π键,sp和sp2杂化使表面电荷分布非常不均匀,表面活性很高。基于此,他们提出了全新的“炔烯互变”、“自扩充载流子通道”和“新模式化学能转换”等概念,拓展了化学、材料和物理学等领域研究的发展空间。

    目前,石墨炔已在催化、能源、光电、生命科学、信息智能和新模式物质转化与转换等领域获得了系列突破性进展。让李玉良感到欣慰的是,“活”的石墨炔已经成为一个活跃的研究领域,研究团队实现了为“中国牌”碳材料代言。如今世界上已经有60多个国家和地区的500多个研究团队对石墨炔开展研究。中国科学院科技战略咨询研究院、中国科学院文献情报中心与科睿唯安等联合向全球发布的《2020研究前沿》报告中,也将石墨炔列为化学与材料科学Top10前沿之一。

    回顾石墨炔研究过程,李玉良体会到“另辟蹊径”对于原创研究的重要性。“长期在单一研究领域,会制约我们的创新能力。”他经常教导团队的青年科研人,“做科研必须学会拓展和吸纳多种学科的知识,并融合到自己的研究中,这样才能不落窠臼,取得更快的进步。”

  • 原文来源:https://news.sciencenet.cn/htmlnews/2022/1/473066.shtm
相关报告
  • 《新型二维层状材料家族再“添丁”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-21
    • 最新发现与创新 科技日报讯 (记者郝晓明)记者从中国科学院金属研究所获悉,沈阳材料科学国家研究中心先进炭材料研究部在新型二维材料方面取得新进展,制备出厘米级单层薄膜二维MoSi2N4材料。该研究成果日前在《科学》杂志在线刊发。 目前广泛研究的二维层状材料如石墨烯、氮化硼等,均存在已知的三维母体材料。探索不存在已知三维母体材料的新型二维层状材料,可极大拓展二维材料的物性和应用,具有重要的科学意义和实用价值。 2015年,中国科学院金属所沈阳材料科学国家研究中心任文才、成会明团队发明了双金属基底化学气相沉积(CVD)方法,制备出多种不同结构的非层状二维过渡金属碳化物晶体,并发现了超薄Mo2C为二维超导体。然而受表面能约束,富含表面悬键的非层状材料倾向于岛状生长,因此难以得到厚度均一的单层材料。 此次沈阳材料科学国家研究中心先进炭材料研究部的研究团队发现,在CVD生长非层状二维氮化钼的过程中,引入硅元素可以钝化其表面悬键,制备出一种不存在已知母体材料的全新的二维范德华层状材料MoSi2N4,并获得了厘米级单层薄膜。单层MoSi2N4包含N-Si-N-Mo-N-Si-N共7个原子层,可以看成是由两个Si-N层夹持单层MoN构成。采用类似方法,研究团队还制备出了单层WSi2N4。 在此基础上,该研究团队与中国科学院金属所陈星秋研究组和孙东明研究组合作,发现了单层MoSi2N4具有半导体性质和优于MoS2的理论载流子迁移率,表现出优于MoS2等单层半导体材料的力学强度和稳定性,并通过理论计算预测出了10多种与单层MoSi2N4具有相同结构的二维层状材料,包含不同带隙的半导体、金属和磁性半金属等。 该研究开拓了全新的二维层状MoSi2N4材料家族,拓展了二维材料的物性和应用,也开辟了制备全新二维层状材料的研究方向。
  • 《碳家族迎来新成员:预言的T—碳在实验室诞生》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-11-27
    • T—碳是中国科学院大学教授苏刚团队6年前通过理论计算预言的一种新型三维碳结构。日前,该碳结构被西安交大和新加坡南洋理工大学联合团队在实验上成功合成,证实了苏刚团队的理论预言,使T—碳成为可与石墨和金刚石比肩的碳的另一种三维新结构,从而为碳家族增加了新成员。 2011年,苏刚指导博士生胜献雷,与闫清波博士、叶飞副教授和郑庆荣教授等合作,通过大量对比研究后提出,如果将立方金刚石中的每个碳原子用一个由4个碳原子组成的正四面体结构单元取代,将会形成碳的一种新型三维立方晶体结构。他们基于密度泛函的第一性原理研究,发现这种结构在几何、能量以及动力学方面都是极其稳定的,并把这种碳的新型同素异形体命名为T—碳。 苏刚等人的研究表明,T—碳具有与金刚石相同的空间群,是一个具有直接带隙的半导体。T—碳还有一个鲜明特点,其密度非常小,约为石墨的2/3,金刚石的一半。T—碳也具有很高的硬度。由于T—碳是一个蓬松的碳材料,其内部有很大空间可供利用,如果用于储能材料,其储氢能力不低于7.7wt%。由于上述独特的性能,T—碳将会在光催化、吸附、储能、航空航天材料等领域拥有广泛的潜在应用。业内专家认为这项工作开启了碳结构研究的新纪元。 苏刚等人通过仔细计算,发现T—碳可能在负压环境下易于形成。进一步的研究也表明,T—碳有可能在宇宙星际尘埃或太阳系外行星中被观测到。 苏刚告诉《中国科学报》记者,在完成理论预言后,自己长期致力于推动T—碳的实验合成工作。“爱迪生说过,99%的实验都会失败,但坚持就一定会有收获。令人欣慰的是,2017年西安交大和新加坡南洋理工大学联合研究团队终于成为了那幸运的1%。”通过皮秒激光照射悬浮在甲醇溶液中的多壁碳纳米管,在极端偏离热力学平衡态的条件下,他们成功实现了从sp2到sp3化学键的转变,详细的结构研究发现:形成的新型碳材料与理论预测的T—碳完全一致,证明合成了T—碳。 此外,T—碳的实验合成不仅在应用上具有诱人的前景,同时也具有重要的科学意义。近年来,理论家们提出了很多种碳结构模型,只有T—碳目前被实验成功合成,这绝非仅是巧合。“很长时间以来,天文学家就观测到宇宙尘埃中碳的含量只有太阳系物质中的60%,并长期致力于研究碳危机之谜。而T—碳的密度恰好为石墨的2/3。这似乎提供了一个启示,如果星际尘埃中的碳大部分是以T—碳的形式存在的话,这是否就是碳危机这样一个重要科学问题的最终答案呢?”苏刚告诉《中国科学报》记者。 西安交大和新加坡南洋理工大学联合研究团队对T—碳的光吸收实验也显示,其主要光吸收峰的位置与星际尘埃中消光曲线鼓峰对应的位置很接近。对这个问题的最终答案,还需要天文学家通过天文观测来进一步证实。苏刚认为,在这方面,我国新建的世界上镜面直径最大的射电天文望远镜FAST也许可以发挥重要作用。