Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults
Mark J. Mulligan, Kirsten E. Lyke, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman, Stephen Lockhart, Kathleen Neuzil, Vanessa Raabe, Ruth Bailey, Kena A. Swanson, Ping Li, Kenneth Koury, Warren Kalina, David Cooper, Camila Fontes-Garfias, Pei-Yong Shi, Özlem Türeci, Kristin R. Tompkins, Edward E. Walsh, Robert Frenck, Ann R. Falsey, Philip R. Dormitzer, William C. Gruber, U?ur ?ahin & Kathrin U. Jansen
Nature (2020)
Abstract
In March 2020, the World Health Organization (WHO) declared a pandemic of coronavirus disease 2019 (COVID-19), due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. With rapidly accumulating cases and deaths reported globally2, a vaccine is urgently needed. We report the available safety, tolerability, and immunogenicity data from an ongoing placebo-controlled, observer-blinded dose escalation study among 45 healthy adults, 18 to 55 years of age, randomized to receive 2 doses, separated by 21 days, of 10 µg, 30 µg, or 100 µg of BNT162b1, a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine that encodes trimerized SARS-CoV-2 spike glycoprotein receptor-binding domain (RBD). Local reactions and systemic events were dose-dependent, generally mild to moderate, and transient. A second vaccination with 100 µg was not administered due to increased reactogenicity and a lack of meaningfully increased immunogenicity after a single dose compared to the 30 μg dose. RBD-binding IgG concentrations and SARS-CoV-2 neutralizing titers in sera increased with dose level and after a second dose. Geometric mean neutralizing titers reached 1.9- to 4.6-fold that of a panel of COVID-19 convalescent human sera at least 14 days after a positive SARS-CoV-2 PCR. These results support further evaluation of this mRNA vaccine candidate. (ClinicalTrials.gov identifier: NCT04368728).