《NAR发现线粒体翻译质量控制对于胚胎发育的重要性》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-27
  • 中国科学院上海生命科学研究院生物化学与细胞生物学研究所王恩多研究组,与芬兰科学家合作的最新研究成果,以Editing activity for eliminating mischarged tRNAs is essential in mammalian mitochondria为题,发表在《核酸研究》(Nucleic Acids Research)上。

    哺乳动物细胞含有两个相对独立的翻译系统:细胞质和线粒体翻译系统。人线粒体翻译系统合成13种线粒体基因组编码的氧化呼吸链复合物亚基,对于氧化呼吸链复合物的组装及线粒体功能至关重要。细胞质翻译系统需要高度的保真性,以确保核基因信息的精确传递。例如,小鼠细胞质丙氨酰-tRNA合成酶(alanyl-tRNA synthetase, AlaRS)的保真性缺失或受损,使错误蛋白质聚焦,进而导致神经退行性疾病或心脏病。但对于线粒体基因组传递的保真性及其体内意义,人们知之甚少。

    研究中,研究人员首次克隆、表达了成熟形式的人线粒体丙氨酰-tRNA合成酶(hmtAlaRS)基因AARS2,纯化获得了高纯度的hmtAlaRS。体外研究表明,hmtAlaRS显著误活化非对应氨基酸Ser,利用转移后编校反应水解误氨基酰化产物Ser-tRNAAla;如果编校反应受损会导致线粒体基因组编码的蛋白质上Ala突变为Ser;发现hmtAlaRS C749A和V760E点突变不同程度地破坏酶的转移后编校反应。

    研究进一步获得小鼠线粒体AlaRS (mmtAlaRS) C744A(对应hmtAlaRS C749A)点突变小鼠及V755E(对应hmtAlaRS V760E)点突变小鼠,发现纯合型小鼠胚胎致死,证实mmtAlaRS介导的编校反应受损对小鼠线粒体发挥正常功能以及胚胎发育具有重要作用。该研究从动物水平上首次揭示线粒体翻译质量控制的重要意义。

    研究工作获得国家重点研发计划、国家自然科学基金、中国科学院、上海市科委等的资助。

  • 原文来源:https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkx1231/4708262
相关报告
  • 《研究发现猪克隆胚胎发育关键候选基因》

    • 来源专题:转基因生物新品种培育
    • 编译者:王晶静
    • 发布时间:2021-03-04
    • 中国农业科学院北京畜牧兽医研究所动物基因工程与种质创新团队研究发现与猪体细胞克隆胚胎初次分裂时间相关的关键候选基因,为提高猪克隆胚胎的发育效率、解析体细胞克隆机制提供了理论基础。相关研究成果在线发表在《基因(Genes)》上。 据牟玉莲研究员介绍,猪体细胞克隆技术是目前唯一可以通过体细胞遗传物质获得完整动物个体的生物技术,广泛应用于育种新材料创制、医学模型构建、猪基因功能研究、优质种畜繁殖以及濒危种质保存等领域,具有重要的科研价值和应用价值,但该技术还存在着克隆胚胎发育能力低、克隆技术效率低等问题。该研究以猪体细胞克隆胚胎为研究对象,通过RNA建库测序,共获得18460个基因,占猪基因组注释基因数量的71%。研究人员通过分析早分裂组(初次分裂时间在24小时)和晚分裂组(初次分裂时间在36小时)间的差异,得到3077个差异表达基因。通过分析发现,差异表达基因显著富集在转录和翻译相关通路,尤其是核糖体以及糙面内质网蛋白加工通路。进一步分析发现,相对于晚分裂克隆胚胎,早分裂克隆胚胎中错误表达的“供体细胞记忆基因”数量更少,表明早分裂克隆胚胎的重编程效果优于晚分裂克隆胚胎。 该研究得到国家自然科学基金项目、中国农科院基本科研业务费等项目支持。(通讯员 付松川) 原文链接:https://www.mdpi.com/2073-4425/11/12/1499#
  • 《北京生科院等发现调控神经管发育新基因》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-14
    •   12月12日,中国科学院北京生科院孙中生团队、温州医科大学、首都儿科研究所合作,在Advanced Science上,在线发表了题为Loss-of-Function of p21-Activated Kinase 2 Links BMP Signaling to Neural Tube Patterning Defects的研究论文。该研究聚焦神经管畸形的致病机制,综合运用神经生物学、人类遗传学、多组学等技术手段,在多种模式生物中揭示了PAK2调节背外侧铰链点形成和神经管发育及其功能异常所致神经管畸形的致病机理,为探究神经管畸形的病理机制提供了崭新视角。   神经管是中枢神经系统发育的基础,在胚胎后期发育成脑和脊柱。在脊椎动物中,神经管闭合是高度复杂的动态调控过程,涉及许多由遗传和表观遗传因素精确控制的细胞事件。神经管闭合异常会导致神经管畸形。神经管畸形致死率和致畸率较高,给患者家庭带来沉重的经济与精神负担。神经管畸形是胎儿和新生儿中最严重的出生缺陷类疾病之一。   PAK家族是一类可以调控细胞骨架的蛋白激酶。该团队的前期研究确定了PAK2在脑发育中的重要功能,并阐明了PAK2在自闭症发病中的分子机制(Wang et al., 2018)。本研究发现Pak2纯和缺失小鼠在胚胎期9.5天时发育迟缓,表现出颅脊柱裂的表型。进一步研究发现,在胚胎期9.5天时,Pak2纯和缺失小鼠未能在后脑和脊柱部位抬起双侧神经板,导致背外侧铰链点形成失败。这提示PAK2基因对于整个头尾胚轴的背外侧弯曲是必要的。研究通过分析胚胎期9.5天的转录组发现,Pak2纯和缺失小鼠的差异表达基因显著富集到初级神经管形成、前脑、中脑、后脑发育、模式特化过程和脊柱发育过程。这些差异表达基因还显著地富集于BMP信号通路。BMP信号通路的多个配体,如BMP4/5和下游Smad9的磷酸化水平,均在Pak2纯和缺失小鼠中显著增加。科研团队进一步将Smad9蛋白417位点丝氨酸突变后可减弱PAK2和Smad9蛋白的相互作用,并解除PAK2对Smad9蛋白465位点丝氨酸磷酸化的抑制。上述工作提示PAK2可通过调控Smad9蛋白的磷酸化水平,从而抑制BMP信号通路,促使双侧神经板的抬起和神经管背外侧铰链点形成。   单细胞测序技术进一步显示,Pak2纯和缺失后可影响中胚层细胞向神经管及前脑和脊柱的分化轨迹,使得与神经管和神经管发育而成的前脑、后脑、脊柱等相关的细胞类型显著下降。与野生型胚胎相比,Pak2纯和缺失胚胎的神经管发育分数及前脑(尤其是间脑部分)发育分数降低。同时,BMP信号通路及该信号通路中的基因表达在Pak2纯和缺失胚胎中增加。这提示Pak2纯和缺失胚胎中异常的分化时序与异常的转录状态相关。   该团队在流产的神经管畸形胎儿中检测到5个位于PAK2基因的点突变。研究运用NanoString检测方法,发现携带PAK2突变的胎儿脑组织中PAK2的水平降低而BMP信号通路中多个基因的水平增加。同时,研究发现PAK2突变点可影响PAK2蛋白的稳定性,抑制ATP转化ADP的水平,显著降低PAK2的活性形式pPAK2的水平,提示该突变位点影响PAK2激酶活性。   研究在斑马鱼中用CRISPR-Cas9系统构建了pak2a的特异敲除模型。该模型在出生后48小时后在头部背前侧区域出现了一个明显的空腔,提示其神经管发育异常。研究在敲除pak2a的斑马鱼中过表达神经管畸形患者携带的PAK2突变位点,发现不能改善斑马鱼神经管畸形的表型。   综上,该研究以神经管特定发育事件(背外侧铰链点形成)为出发点、从细胞动态时序发育过程(单细胞测序技术)、分子机制(磷酸化激酶活性)和信号通路(BMP通路)等多水平,在多种脊椎类生物中阐明了PAK2在神经管发育的作用机制。   研究工作得到国家自然科学基金和广东省重点领域研发计划等的支持。