《土壤微食物网调控农田温室气体排放研究取得进展》

  • 来源专题:耕地与绿色发展
  • 编译者: 张毅
  • 发布时间:2025-06-04
  • 近日,中国科学院成都山地灾害与环境研究所研究团队在土壤微食物网调控农田温室气体排放的研究中取得进展。相关成果发布于《农业生态系统与环境》上。

    在集约化种植模式下,农作物生产是全球温室气体排放的重要来源之一。然而,目前对农田生态系统中,土壤生物调节温室气体排放的机制了解有限:多数研究主要关注土壤微生物(细菌和真菌)对温室气体排放的影响,这限制了利用土壤生物促进减排的潜力。

    基于盐亭站长期田间定位试验,朱波团队在团聚体尺度上,结合高通量测序和共现网络分析,构建了农田紫色土包含微生物以及高营养级捕食者(线虫和原生生物)的土壤微食物网。研究结果表明,作物生育期排放的主要温室气体是CO2,而土壤微食物网的关键功能群可解释高达35%的CO2排放变异。不同施肥措施显著改变了土壤微食物网中这些关键功能群的组成。

    此外,基于随机森林回归分析发现,土壤大团聚体中的线虫和各粒径团聚体中的原生生物对关键功能群的组成具有重要贡献。本研究明确了在土壤微食物网中,不同营养级的生物群落参与了CO2排放通量的动态调控。为更精准地评估土壤生物对温室气体排放的影响,需重视高营养级生物(尤其是土壤原生生物)的生态功能。

    相关论文信息:https://doi.org/10.1016/j.agee.2024.109441

  • 原文来源:http://news.sciencenet.cn/htmlnews/2025/5/544471.shtm
相关报告
  • 《武汉植物园在土地利用变化对土壤温室气体释放影响的研究中取得进展 》

    • 来源专题:长江流域资源与环境知识资源中心 | 领域情报网
    • 编译者:changjiang
    • 发布时间:2018-01-08
    • 2018-01-02. . 打印. 字体大小: 大 中 小. 关闭.   土地利用变化是全球变化的重要组成部分,对土壤有机碳的动态有至关重要的影响。土壤呼吸是陆地生态系统向大气释放二氧化碳最主要的途径,对大气二氧化碳浓度都会产生深远的影响。甲烷是仅次于二氧化碳的第二大温室气体,其增温潜势是二氧化碳的 28倍。透气良好的土壤能氧化大气中的甲烷,减缓全球变暖,因此被越来越多的研究。土地利用方式变化能够通过改变土壤物理化学性质以及微生物群落结构,进而对土壤呼吸和甲烷氧化产生影响。研究土地利用变化对土壤温室气体释放的影响对评估陆地生态系统碳动态有着重要的作用。   中国科学院武汉植物园土壤生态学课题组博士生张倩和助理研究员吴君君在程晓莉研究员的指导下,以丹江口库区农田、灌丛和森林为对象,进行了为期一年的土壤呼吸及其同位素的测量。研究结果表明,造林显著增加了土壤呼吸,造林显著增加了土壤有机碳的数量和质量,从而使土壤呼吸增加。土壤呼吸碳同位素值与微生物碳同位素值呈显著正相关关系,造林改变了输入到土壤中凋落物的碳同位素信号值,进而使土壤呼吸同位素值产生变化。土壤呼吸可以作为土壤有机碳质量和数量较为灵敏的指示器,土壤呼吸较高意味着造林有效提升了土壤有机碳的总量。   同时,助理研究员吴君君在的程晓莉研究员的指导下,以丹江口库区农田、灌丛和森林为对象,运用稳定同位素的方法研究甲烷氧化速率,结果表明造林能够显著增加甲烷的氧化速率,灌丛和森林甲烷氧化速率较农田高 186.3%和 93.5%,造林地甲烷氧化速率的增加和土壤有机碳的质量,氮的有效性以及微生物生物量的增加密切相关,农田较高浓度的无机氮反而抑制了甲烷氧化速率。同时,不同的植被类型对土壤甲烷氧化也有显著影响:豆科植物为优势种的植被类群下的土壤较针叶林类群有更高的甲烷氧化速率,可能是因为灌丛氮的有效性较高所引起的。甲烷氧化过程中,造林地较农田的同位素分馏系数低,证实了造林地更高的甲烷氧化速率。本研究表明在进行造林的过程中,土壤有机碳和氮的增加加强了对土壤甲烷的吸收,降低了温室效应。   本研究得到国家自然科学基金 (31470557, 31270550, 31770563)和中国科学院战略先导专项 B(XDB15010200)的资助,相关研究成果以“ Agricultural land use change impacts soil CO2 emission and its 13C-isotopic signature in central China”和“ Afforestation enhanced soil CH4 uptake rate in subtropical China: evidence from carbon stable isotope experiments”为题分别发表在国际 SCI期刊 Soil & Tillage Research和 Soil Biology and Biochemistry上。
  • 《东北地理所在农田活性氮排放及其对区域空气质量影响研究中取得进展》

    • 来源专题:耕地与绿色发展
    • 编译者:张毅
    • 发布时间:2025-06-18
    • 氮肥施用是保障粮食安全的关键措施之一,对提高农作物产量、增强土壤肥力、促进农业可持续发展具有不可替代的作用。然而,过量或不合理的氮肥施用不仅降低肥料利用率,还会导致温室气体排放增加和大气污染等一系列气候或环境问题。中国作为全球最大的化肥消耗国,过量施肥导致的农田活性氮(Nr,包括NH3、N2O、NO和HONO)排放对区域大气环境的影响不容忽视。在当前其他人为污染源得到有效控制并逐步减少的背景下,明确农田Nr排放的时空分布特征及其对区域细颗粒物(PM2.5)和臭氧(O3)污染的贡献将有助于“持续深入打好蓝天、碧水、净土保卫战”。然而,现有研究多基于统计方法估算农田Nr的年排放量,缺乏高时空分辨率的排放数据,制约了农田Nr在PM2.5与O3污染形成过程中作用的模拟准确性。中国科学院东北地理与农业生态研究所区域大气环境学科组研究人员将国际上先进的基于过程的农业生态模型FEST-C*进行本地化改进,成功构建了WRF-FEST-C*-CMAQ多模型系统。应用该系统对2020年中国农田Nr排放进行逐日模拟,深入分析了其时空分布特征及主要驱动因素,全面评估了农田Nr排放对区域大气PM2.5和O3生成的影响。 研究发现,2020年中国农田Nr排放总量为6.32 Tg,其中NH3、N2O、NO和HONO的排放量分别为4.21 Tg、0.85 Tg、0.66 Tg和0.60 Tg(图1)。在各类Nr物种中,NH3排放受施肥影响最为明显,约14%的农田氮会转化为气态NH3挥发至大气中。华北、东南和西南地区是Nr排放的热点区域,其排放总量占全国80%以上。小麦、玉米和水稻是中国农田 Nr 排放的主要作物,其贡献率分别为36%、24%和 22%。作为我国粮食主产区,华北地区农田Nr排放主要集中在6月、7月和10月,东南地区的Nr排放峰值在3月和4月,而东北地区为5月和6月,这种排放时间特征与各地区主要作物的施肥与播种时间相一致。值得注意的是,农田N2O排放在8月有一定的升高,表明N2O排放也受到除施肥外的其他环境因素的影响。基于结构方程模型、随机森林及优势分析等方法对影响各区域农田Nr排放的驱动因素进行分析,发现氮肥施用量、土壤温度和土壤湿度是影响Nr排放的主控因素且与排放呈显著正相关。从一年一熟到一年三熟制地区,氮肥施用量、土壤温度和土壤湿度对除HONO外的其他Nr物种排放的相对重要性增加了5%-15%,而农田HONO排放在一年两熟和一年三熟制地区主要受土壤温度和湿度的影响。农田NO和HONO排放促进了区域大气O3的生成,导致全国8小时滑动平均O3浓度升高约8%,这种促进作用在华北地区最为明显。在华北南部和东南部地区,农田NO和HONO排放导致小时 O3浓度下降,其主要原因是夜间O3被大气中的NO快速滴定而消耗(图2)。 相关成果发表在国际期刊《Science of the Total Environment》和《Agriculture》上,东北地理所区域大气环境学科组博士生张萌铎和张学磊副研究员为共同第一作者,修艾军研究员为通讯作者。该研究得到中国科学院人才计划和国家自然科学基金等项目共同资助。 论文信息: Zhang,M.,Zhang,X.,Gao,C.,Zhao,M.,Zhang,S.,Xie,S.,Ran,L.,Xiu,A. Reactive nitrogen emissions from cropland and their dominant driving factors in China. Science of The Total Environment,2025,968: 178919.https://doi.org/10.1016/j.scitotenv.2025.178919. Zhang,M.,Zhang,X.,Gao,C.,Zhao,M.,Zhang,S.,Xie,S.,Xiu,A. Quantifying the impact of fertilizer-induced reactive nitrogen emissions on surface ozone formation in China: Insights from FEST-C* and CMAQ Simulations. Agriculture,2025,15(6):612. https://doi.org/10.3390/agriculture15060612.