《石墨烯为未来的太赫兹相机带来了巨大的推动力》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-04-22
  • 科学家开发出一种新型石墨烯光电探测器,可在室温下工作,灵敏度高,速度快,动态范围宽,覆盖范围广泛的太赫兹频率。

    检测太赫兹(THz)光非常有用,主要有两个原因:

    首先,太赫兹技术正在成为安全应用(如机场扫描仪),无线数据通信和质量控制等关键要素,仅举几例。然而,目前的THz探测器在同时满足灵敏度,速度,光谱范围,能够在室温下操作等方面的要求方面表现出很大的局限性。

    其次,由于其低能光子,它是一种非常安全的辐射,其能量比可见光范围内的光子低一百倍。

    预计许多基于石墨烯的应用将用作检测光的材料。与用于光检测的标准材料(例如硅)相比,石墨烯具有不具有带隙的特殊性。硅中的带隙导致波长大于1微米的入射光不被吸收,因此未被检测到。相反,对于石墨烯,甚至可以吸收和检测波长为几百微米的太赫兹光。尽管迄今为止基于石墨烯的THz探测器已经显示出有希望的结果,但到目前为止,没有一个探测器能够在速度和灵敏度方面击败市售的探测器。

    在最近的一项研究中,ICFO研究人员Sebastian Castilla和Bernat Terre博士在ICFO Frank Koppens的ICREA教授和前ICFO科学家Klaas-Jan Tielrooij博士(现为ICN2的初级组长)的带领下,与来自科学家的科学家合作CIC NanoGUNE,NEST(CNR),南京大学,Donostia国际物理中心,约阿尼纳大学和国家材料科学研究所,已经能够克服这些挑战。他们开发了一种新型石墨烯光电探测器,可在室温下工作,灵敏度高,速度快,动态范围宽,覆盖范围广泛的太赫兹频率。

    在他们的实验中,科学家们能够使用以下方法优化太赫兹光电探测器的光响应机制。他们将偶极天线集成到探测器中,以将入射的THz光集中在天线间隙区域周围。通过制造非常小(100nm,比头发的厚度小约一千倍)的天线间隙,它们能够在石墨烯通道的光活性区域中获得THz入射光的强烈浓度。他们观察到石墨烯吸收的光在石墨烯的pn结处产生热载流子;随后,p区和n区中的不等塞贝克系数产生局部电压和通过器件的电流,产生非常大的光响应,从而产生非常高灵敏度的高速响应检测器,具有宽动态范围和广泛的光谱覆盖范围。

    这项研究的结果为开发全数字低成本相机系统开辟了道路。 这可能与智能手机内部的相机一样便宜,因为这种探测器已被证明具有非常低的功耗并且与CMOS技术完全兼容。

    ——文章发布于2019年4月15日

相关报告
  • 《中国科大在太赫兹波段主动调控材料和器件研究中取得系列进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-07-31
    •         中国科学技术大学教授陆亚林量子功能材料和先进光子技术研究团队在太赫兹主动调控器件研究方面取得系列进展。该团队研究了太赫兹波与超构材料、氧化物超晶格薄膜相互作用机制,并成功制备了超快的太赫兹调制器,率先实现了皮秒级的高调制深度的太赫兹超快开关;同时制备了多功能的太赫兹器件,在单一器件中实现电开关、光存储和超快调制多种功能。相关研究成果近期相继发表在国际学术期刊《先进光学材料》[Adv. Optical Mater.]和《光学快讯》[Opt. Express.]上。   太赫兹波具有独特的时域脉冲、低能、谱指纹、宽带等特性,它在物理化学、材料科学、生物医学、环境科学、安全检查、卫星通讯等领域有着广阔的应用前景。其中,影响太赫兹技术发展和应用的关键因素之一是难以获得主动太赫兹调控元器件。超构材料,一种由金属或介质材料的亚波长微结构阵列组成的人工材料,其奇异的电磁响应特性为太赫兹调控器件提供了绝佳的解决方案。遗憾的是,以往基于超构材料的太赫兹元器件均由金属材料构成,加工尺寸固定后,器件的功能在实际应用中便难以主动改变。因此,发展主动调控的太赫兹元器件有着重要的研究意义。   通常主动调控是对太赫兹波偏振、振幅、相位等进行调控,调控速度是另外一个指标。一些实际应用也迫切需求对太赫兹波进行超快调控。陆亚林团队设计并制作了基于硅介质的超快调控超表面。通过对硅薄膜进行离子注入和快速热处理工艺,大大减小了硅的载流子寿命并提高了自由载流子浓度。然后通过光刻、刻蚀工艺将硅薄膜加工为能在太赫兹波段共振的圆盘阵列结构的超表面。利用红外飞秒脉冲的激发,率先实现了皮秒级的高调制深度的太赫兹超快开关(开20ps,关300ps),并基于半导体载流子动力学建立理论模型对其进行了合理的解释。相关研究成果近日在《先进光学材料》期刊上线[Adv. Optical Mater. 2018, DOI:10.1002/adom.201800143]。   另外,当前研究的太赫兹主动调控器件功能比较单一,即只能在单一外场下实现单一的功能。但单一功能难以适应当今技术发展的要求。因此,在单一器件上,实现多物理场的调控,并实现对太赫兹波的多功能调控,是当前太赫兹技术的发展前沿之一,也是实际应用的现实需求。有鉴于此,该团队基于VO2的绝缘-金属相变,通过将VO2与金属非对称开口谐振环结合,设计了一种太赫兹波段的多功能可调谐复合超表面,并利用国家同步辐射实验室副研究员邹崇文提供的高质量VO2薄膜,通过刻蚀、光刻等工艺制备了器件。此复合超表面能够通过加热和施加电流的方式实现对透射太赫兹波的振幅调控,绝对调制深度高达54%,品质因数高达138%。基于VO2在相变过程中的回滞特性,该复合超表面可以通过电流触发实现室温下对太赫兹波的记忆存储功能。此外,利用超快强脉冲泵浦,此复合超表面还能实现对太赫兹波的超快调控。从而,在单一器件实现了对太赫兹波的多功能调控。相关研究成果近日在《先进光学材料》期刊上线[Adv. Optical Mater. 2018, DOI: 10.1002/adom.201800257]。   此外,很多材料在太赫兹波段的响应仍是未知的,而只有研究清楚了各类材料与太赫兹波相互作用的特性,设计主动太赫兹器件才能有迹可循。该团队利用自行搭建的两套太赫兹系统测量并分析了量子功能材料与太赫兹波的相互作用。重点研究了不同周期数的La0.7Sr0.3MnO3/ SrTiO3超晶格薄膜的太赫兹响应,发现了532 nm连续激光的泵浦对此超晶格在太赫兹波段的介电常数具有较大的调控作用,并通过Drude-Lorentz模型的拟合对此现象进行了微观机理的解释,这为寻找新的可用于太赫兹主动调控器件的功能材料开辟了新路径。相关研究成果发表在《光学快讯》[Opt. Express. 26, 7842 (2018)]上。   上述论文的第一作者为合肥微尺度物质科学国家实验中心博士研究生蔡宏磊,通讯作者为黄秋萍、陆亚林。该工作得到了科技部、国家自然科学基金委、中国科学院和教育部等关键项目的资助。
  • 《中国科学院精密测量院在液体太赫兹波产生机制的理论研究方面获进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-04-18
    • 太赫兹波在通讯和成像等方面颇具应用价值。强场超快激光与物质非线性相互作用是产生太赫兹波的重要方式之一。等离子体、气体、晶体等太赫兹产生介质相关的实验与理论研究较为充分。然而,液体水是很强的太赫兹波吸收介质,尚未有其产生太赫兹波的报道。2017年,实验发现,液体薄膜厚度或液体束直径降到微米量级时,太赫兹波的辐射大于吸收。这开启了液体太赫兹波研究的新方向。 近年来,液体太赫兹波领域有实验报道,但实验观测到的较多现象均与其他介质的结果不同。例如:单色激光场可以有效地产生液体太赫兹波,而气体介质需要特定相位差的双色激光;液体太赫兹波的产率与驱动激光的能量是正比关系,而气体介质中是平方关系;在一定范围内液体太赫兹波的产率随激光的脉冲宽度的增加而增加,而气体介质相反;在双色激光的驱动下,液体太赫兹波出现非调制信号,在气体介质中却未见类似信号。复杂无序的液相体系的理论研究一直是难题,以上现象难以用已有理论来解释。科研人员只能基于之前的等离子体模型和界面效应等,来解释一些高光强下的宏观实验结果。 近日,中国科学院精密测量科学与技术创新研究院研究员卞学滨和博士研究生李正亮,提出了产生液体太赫兹波的位移电流模型,可以系统解释上述实验观测到的系列反常现象。该微观机制模型的物理图像如图所示:液体的无序结构使得电子波包局域化,同时不同分子的外层电子的能量受到环境的影响而发生移动,在强场激光的作用下不同分子的外层电子发生跃迁,产生非对称体系的位移电流。这些跃迁的能量差在太赫兹能量区域,进而辐射出太赫兹波。同时,该工作表明原子核的量子效应起到关键作用,并预言太赫兹辐射可以研究液体的同位素效应。 上述成果是卞学滨团队在液相强场超快动力学研究领域继高次谐波统计涨落模型之后的又一理论进展。相关研究成果以Terahertz radiation induced by shift currents in liquids为题,发表在《美国国家科学院院刊》(PNAS)上。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院稳定支持基础研究领域青年团队计划等的支持。