《人工病毒载体可用于基因编辑》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-06-01
  • 《自然·通讯》30日报告了一种制作人工病毒样载体的方法,所制载体能进入人类细胞执行特定任务,如基因编辑。这种大容量、可定制化的纳米材料为未来基因疗法和定制化医疗带来新希望。

      病毒是一种高效的生物“机器”,能够快速复制和组装后代。自然的人类病毒,如慢病毒属,此前曾经过改造在动物中递送治疗性的DNA或RNA,但它们的递送能力有限而且有安全问题。通过制造以治疗性分子编程的人造病毒载体让病毒机制为人所用,可进行有益的修复,帮助人类恢复健康。

      美国天主教大学和普渡大学研究团队此次设计了一种方法,用一类被称为T4噬菌体、能感染细菌的病毒,制造人造病毒载体(AVV)。这类AVV有很大的内部容量和一个大的外表面,可编程和递送治疗性生物分子。在概念验证实验中,他们生成了含有蛋白和核酸物质的AVV,用于展示在基因组改造方面的用途。在实验室中,这一平台能将全长的抗肌萎缩蛋白基因成功递送到人类细胞,并执行各种分子操作改造人类基因组。此外,AVV大量生产时成本不高,并且这些纳米材料可以保持稳定数个月。

      团队说,尽管还需要进一步工作来评估安全性,但这一方法已展现出未来前景,可用于临床治疗人类疾病和罕见病。

      

    【总编辑圈点】

      病毒是地球上数量最多、分布最广的生物。它们的组成如此之简单,进化机制却如此之高效,掀起的致命感染和全球流行病,需要人类耗费巨大人力物力来抗衡。那能否让病毒这个特点为我所用呢?这就是人造病毒载体的研究方向。多年来,这一领域仅在起步阶段,但现在,我们看到了这一技术为未来基因疗法和定制化医疗带来的希望。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2023-06/01/content_554031.htm?div=-1
相关报告
  • 《Nature子刊:人造病毒载体,容量更大成本更低,可用于基因编辑和治疗》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-06-01
    • 病毒(Virus)是我们地球上数量最多、分布最广的生物,它们也是一些最有效的生物机器。尽管病毒体积小,基因组成简单,但它们可以引起致命的感染和全球流行病,如艾滋病、流感和COVID-19等等。这是因为病毒进化出了高效机制,可以在短时间内复制和组装出后代,对于细菌病毒(噬菌体)来说,这个过程只需短短几分钟。 如果我们能够利用病毒的这些有效机制构建出人工病毒载体(Artificial Viral Vectors,AVV),用来递送治疗性分子,而不是在宿主细胞内复制,就能实现更好的细胞和基因治疗。尽管多年来科学家们进行了多次尝试,但AVV的开发仍处于早期阶段。 天然人类病毒,例如单链DNA病毒腺相关病毒(AAV)和单链RNA病毒慢病毒(Lentiviruse),已被设计并广泛应用于体外和体内的基因递送载体。例如,全世界最贵药物Hemgenix就是一款基于AAV病毒载体的血友病B型基因疗法。而FDA批准的6款CAR-T细胞疗法则全部基于慢病毒载体。 然而,这些天然病毒载体都有局限性,它们最多只能携带一到两个治疗性基因,很难再结合复杂修复所必需的额外治疗性分子。此外,这些病毒载体还存在一些安全性问题,例如对人类细胞的广泛感染性、在人体中预先存在的免疫原性,以及对人类基因组的潜在整合问题等。 2023年5月30日,美国天主教大学的研究人员在 Nature 子刊 Nature Communications 上发表了题为:Design of bacteriophage T4-based artificial viral vectors for human genome remodeling 的研究论文。 该研究报告了一种制作人工病毒载体(AVV)的方法,这种载体能进入人类细胞执行特定任务,可携带更大的基因,且制造成本相对更低,这种大容量、可定制化的纳米材料可以为未来基因疗法和定制化医疗的受试者带来前景。 在这项研究中,Venigalla Rao 团队设计了一种方法,用一类称为T4噬菌体、能感染细菌的病毒,制造人造病毒载体(AVV)。这类AVV有很大的内部容量和一个大的外表面,可编程和递送治疗性生物分子。 在概念验证实验中,研究团队生成了含有蛋白和核酸物质的人造病毒载体(AVV),用于展示在基因组改造方面的用途。 在实验室中,这一平台能成功递送全长抗肌萎缩蛋白基因(Dystrophin)到人类细胞中,并执行各种分子操作改造人类基因组。 Dystrophin基因突变会导致杜氏肌营养不良(DMD),该基因非常巨大,有多达79个外显子,转录本长达14kb,远超病毒递送载体的装载极限,用于体内基因治疗递送的腺相关病毒(AAV)装载极限仅4.7kb,因此,难以通过腺相关病毒递送全长Dystrophin基因进行DMD治疗。   人造病毒载体(AVV)还能用来递送RNP和DNA,用于CRISPR-Cas9基因编辑及基因重组。还可以用来递送RNA,实现基因沉默、基因编辑,以及蛋白表达。 此外,这种人造病毒载体(AVV)大量生产时成本不昂贵,并且这些纳米材料可以保持稳定数个月。研究团队总结道,尽管还需要进一步工作来评估该人造病毒载体的安全性,但这一方法已展现未来前景,可用于临床治疗人类疾病和罕见病。
  • 《Nature:无需病毒载体,利用电穿孔成功对人T细胞进行CRISPR基因编辑》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-15
    • 在一项新的研究中,来自美国加州大学旧金山分校的研究人员在不使用病毒插入DNA的情形下对人T细胞(一种免疫细胞)进行重编程。这一成就对研究、医学和产业产生重大的影响。他们期待他们的方法---一种快速的通用的经济的采用CRISPR基因编辑技术的方法---将会在新兴的细胞治疗领域中得到广泛使用,加速开发出新的更加安全的治疗癌症、自身免疫疾病和其他疾病(包括罕见的遗传性疾病)的疗法。相关研究结果于2018年7月11日在线发表在Nature期刊上,论文标题为“Reprogramming human T cell function and specificity with non-viral genome targeting”。 这种新方法提供了一种强大的分子“剪切和粘贴”系统,用于重写人T细胞中的基因组序列。它依赖于电穿孔,即一种将电场施加到细胞上使得它们的细胞膜暂时地更具有渗透性。在一年内试验了数千个变量之后,这些研究人员发现,当某些数量的T细胞、DNA和CRISPR“剪刀”混合在一起然后暴露在一种适当的电场中时,这些T细胞将摄入DNA和CRISPR剪刀,并且精确地将特定的基因序列整合到CRISPR在基因组中的靶切割位点上。 论文通信作者、加州大学旧金山分校微生物学与免疫学副教授Alex Marson博士说,“这是一种快速而又灵活的方法,可用于改变、强化和重编程T细胞,这样我们就能够给它们提供我们想要的特异性来清除癌症、识别感染或者抑制自身免疫性疾病中观察到的过度免疫反应。” Marson说,不过与这种新方法的速度和易用性同样重要的是它使得将比较长的DNA序列插入到T细胞中成为可能,这种插入会给这些T细胞赋予强大的新特性。Marson实验室的成员已在利用电穿孔和CRISPR将短DNA片段插入到T细胞中取得了一些成功,但是,在此之前,许多科学家们将较长的DNA序列插入到T细胞中的多次尝试导致这些T细胞死亡,这就让大多数人认为较长的DNA序列对T细胞是极其有毒性的。 为了证实这种新方法的多功能性和功效,这些研究人员利用它修复来自三名患有一种罕见遗传形式的自身免疫疾病的儿童的T细胞中的引起疾病的基因突变,并且还利用它构建出定制的T细胞来寻找和杀死人黑色素瘤细胞。 病毒通过将它们自己的遗传物质注射到细胞中而引起感染,而且自20世纪70年代以来,科学家们借鉴病毒的这种能力,除去它们的传染性,由此产生的“病毒载体”可将DNA转运到细胞中用于研究和基因治疗,并且构建CAR-T细胞用于癌症免疫疗法。 如今,利用病毒对T细胞进行基因改造已被美国食品药物管理局(FDA)批准用于抵抗某些类型的白血病和淋巴瘤。但是构建病毒载体是一个艰苦而成本昂贵的过程,而且临床级病毒载体的短缺导致基因疗法和基于细胞的疗法陷入制造瓶颈。即使在可用的情况下,病毒载体也是很不理想的,这是因为它们将基因随意地插入到细胞基因组中,这可能损害现有的健康基因或让新导入的基因不受确保细胞发挥正常功能的调节机制的调节。这些限制可能潜在地导致严重的副作用,因而在基因疗法和细胞疗法(比如基于CAR-T细胞的免疫疗法)中引发人们的担忧。 论文第一作者、在加州大学旧金山分校医学科学家培训计划攻读博士学位的研究生Theo Roth说,“已有30多年的研究工作试图将新的基因导入到T细胞中。如今,应当不再需要实验室中的六到七个人利用病毒对T细胞进行基因改造,而且如果我们开始看到数百个实验室而不是少数实验室对这些T细胞进行基因改造,并研究越来越复杂的DNA序列,那么我们将尝试更多的可能性以便显著加快未来几代细胞疗法的开发。” 经过将近一年的反复试验,Roth确定了T细胞群体、DNA量和CRISPR丰度的比例,并且在施加具有适当参数的电场的情形下,能够高效而又准确地编辑T细胞的基因组。 为了验证这些发现,Roth利用CRISPR给一系列不同的T细胞蛋白标记上绿色荧光蛋白(GFP),这种标记结果是高度特异性的,具有非常低水平的“脱靶”效应:仅通过Roth设计出的CRISPR模板而被标记上GFP的每个亚细胞结构才会在显微镜下发出绿色荧光。 随后,在旨在对这种新方法的治疗前景进行概念验证的补充实验中,Roth、Marson及其同事展示了它如何潜在地被用来引导T细胞抵抗自身免疫疾病或癌症。 在第一组补充实验中,Roth及其同事们使用了美国耶鲁大学医学院医学博士Kevan Herold提供给Marson实验室的T细胞。这些T细胞来自三名患有罕见的严重性自身免疫疾病而且迄今为止一直对治疗产生抵抗力的兄弟姐妹。基因组测序已表明这三名儿童的T细胞在IL2RA基因上携带着突变。这个基因含有表达一个细胞表面受体的指令。这个细胞表面受体是控制其他的免疫细胞和阻止自身免疫反应的调节性T细胞产生所必需的。 利用这种非病毒CRISPR技术,这些研究人员能够快速地修复这三名儿童T细胞中的IL2RA突变,并恢复受到这种突变影响的细胞信号。在CAR-T细胞免疫治疗中,已从患者体内取出的T细胞经过基因改造后能够增强它们的抗癌能力,随后将它们灌注回患者体内,从而靶向攻击肿瘤。这些研究人员希望一种类似的方法也可能有效地治疗调节性T细胞发生功能故障的自身免疫疾病,比如这三名携带着IL2RA突变的儿童所患的疾病。 在第二组补充实验中,通过与加州大学洛杉矶分校帕克癌症免疫疗法研究所的Cristina Puig-Saus博士和Antoni Ribas博士合作,Marson团队利用已经过特异性地基因改造靶向摧毁一种特定的人黑色素瘤细胞亚型的新型T细胞受体完全取代一种正常的人T细胞群体携带的天然T细胞受体。T细胞受体是T细胞用来检测疾病或感染的传感器,并且在实验室培养皿中,这些经过基因改造的T细胞高效地靶向黑色素瘤细胞并且同时忽略其他的细胞,从而表现出精确癌症医学所需的靶向特异性。 在不使用病毒的情况下,这些研究人员能够产生大量的经过CRISPR重编程的T细胞,这些T细胞经重编程后产生新的T细胞受体。当被移植到已植入人黑素色瘤的小鼠中时,这些经过CRISPR重编程的人T细胞进入肿瘤部位并显示出抗癌活性。 Marson 说,“这种替换T细胞受体的策略能够推广到任何一种T细胞受体。通过这种新技术,我们能够对基因组的特定位点进行分子剪切和粘贴,从而重写基因组序列中的特定片段。” Roth说,鉴于这种新技术能够在一周多一点的时间内构建出可行的定制T细胞系,它已改变了Marson实验室的研究环境。针对之前因病毒载体带来的障碍而被认为过于困难或昂贵的实验的想法如今能够加以研究。Roth说,“我们将研究20个'疯狂'的想法,这是因为我们能够非常快速地创建CRISPR模板,而且一旦我们有了模板,我们就能够将它放入T细胞中并快速地培养这些T细胞。” 在面对人们普遍认为病毒载体是必需的以及T细胞仅耐受小片段DNA的情形下,Marson将这种新方法的成功归功于Roth的“绝对坚持”。“Roth确信如果我们能够找到合适的条件,我们就能够克服这些明显的限制,而且他付出了巨大的努力来测试数千种不同的条件:CRISPR与DNA的比例;不同的T细胞培养方法;不同的电流。通过优化每个参数并将最佳条件放在一起,他能够观察到这个令人吃惊的结果。”