《北京大学深圳研究生院在全固态锂电池及关键材料研究中取得重要进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-12-05
  • 电动车和手机的下一代锂电池将会选择能量密度更高、安全性更好的全固态锂离子电池。国家为了加速新材料和全固态锂离子电池研发,“十三五”期间首次设立“材料基因组技术”国家重点研发计划,并希望通过材料基因组的高通量计算、合成、检测及数据库(大数据的机器学习和智能分析)的新理念和新技术加速全固态锂离子电池的研发,设立“基于材料基因组技术的全固态电池研发”国家重点专项,该重点专项由北京大学深圳研究生院新材料学院潘锋教授作为首席科学家牵头组织11家单位共同承担。该项目研发的重要部分包括高性能全固态锂电池及关键材料(例如:新型固态电解质等)和机理(例如:固态电池材料各界面调控等)的研发。传统无机陶瓷类电解质具有界面阻抗大、与电极材料匹配性差等缺点,目前难以在固态电池领域得到大规模应用,因此开发具有较小界面阻抗的新型固态电解质对固态电池能量密度以及电化学性能的提升均具有十分重要的意义。

    新型固态电解质降低界面阻抗机理以及固态电池示意图

    潘锋教授课题组最近在新型固态电解质以及高能量密度固态电池方面的研究取得重要进展,将含锂的离子液体([EMI0.8Li0.2][TFSI])作为客体分子装载进多孔的金属-有机框架材料(MOF)纳米颗粒载体中,制备了新型复合固态电解质材料。其中,含锂的离子液体负责锂离子传导,而多孔的金属-有机框架材料则提供了固态载体以及离子传输通道,避免了传统液态锂离子电池漏液的风险,同时对锂枝晶具有一定的抑制作用,使得金属锂可以直接用作固态电池负极。新型的固态电解质材料不仅具有较高的体相离子电导率(0.3mS?cm-1),另外由于其独特的微观界面润湿效应(nano-wetted effect)使得其界面锂离子传输性能极佳,与电极材料颗粒间具有良好的匹配性。由于以上特点,该新型固态电解质与磷酸铁锂正极和锂金属负极组装的固态电池可以达到极高的电极材料负载量(25mg?cm-2),并且在-20-100℃的温度区间内表现出良好的电化学性能。

    固态电池长循环稳定性以及在不同温度下的循环容量

    该研究成果近期发表在国际材料领域顶级期刊Advanced Materials(Adv. Mat.,2017,1704436,DOI:10.1002/adma.201704436,影响因子为19.8)上,该项工作由潘锋教授指导团队合作完成。博士后王子奇为第一作者。该项工作得到国家材料基因重点专项和广东省创新团队的支持。

相关报告
  • 《北大新材料学院在提高固态锂电池界面传输取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-08-06
    • 锂离子电池(LIB)在便携式电子设备,电动车等领域有着广泛的运用,但低能量密度和易漏、易燃等安全问题使得LIB难以满足当代需求。固态电池(SSB),使用更安全的固态电解质(SSE)取代液态有机电解质,避免了电解液的泄漏,规避了电解液的易燃问题,并且固态电池可以物理阻挡锂枝晶或者经过修饰之后使得锂沉积更加均匀,因此可以使用锂金属作为负极,被认为是未来最有希望的便携储能体系之一。 固体电解质一般包括无机氧化物陶瓷类,硫化物类,有机聚合物类,氢化物类以及薄膜固态电解质LPON。其中无机氧化物陶瓷类又主要包括石榴石型LLZO,NASION型,还有钙钛矿类固态电解质。无机氧化物陶瓷固态电解质不仅电导率高,可达到10-3S/cm,而且电化学窗口宽,但是由于陶瓷SSE的刚性和脆性,界面问题是阻碍SSB的实际应用的一大因素;SSB中固体-固体界面(固态电解质颗粒间及固态电解质与电解材料颗粒间)的锂离子传输动力学与传统LIB的液-固界面的相比要差得多,从而限制了SSB的活性物质负载量和倍率性能。对于无机陶瓷的界面问题,以LLZO固态电解质为例,国内外很多课题组对其界面做了诸多的努力,LLZO由于其表面的碳酸锂,氢氧化锂等表面产物,使得其与金属锂接触不润湿,如就将非晶硅、Ge、Sn、Al2O3等镀在LLZO表面来改善与金属锂的接触。但是在与正极接触的界面很少有改善的工作,有引入凝胶聚合物电解质的,也有将LLZO和正极直接烧结在一起的,但是这样还是引入了易燃的电解液或者循环性能不稳定。并且致密的LLZO的烧结需要高温,过程繁琐且耗能,因此开发一种可以同时改善LLZO晶界和正、负极界面的方法具有重要的科研、产业价值。 近日,北京大学深研院新材料学院潘锋教授课题组针对固态电池的固体-固体界面问题设计了一种新型的电化学稳定的MOF离子导体,将其和LLZO结合在一起,有效地改善了界面的Li离子迁移。这种离子导体(Li-IL@ MOF,命名为LIM)是多孔MOF和含锂离子液体(Li-IL)的混合物。作为SSB的离子导电剂,Li-IL可以通过MOF主体的开放孔道与LLZO颗粒表面直接接触,这能使不稳定的固态接触转换成纳米浸润的界面,促进锂离子传输。制备方法是简单地将LLZO粉末与20 %的LIM混合,然后在手套箱里用直径12mm的模具施加8T的压力压成片,混合的SSE在室温下表现出高的离子电导率(1×10-4s/cm),并且具有宽的电化学窗口5.2V,且与Li金属负极具有良好的匹配性。当离子导体和LiCoO2(LCO)和LiFePO4(LFP)混合组装成SSBs后,可以在电池内部建立有效的Li 传输网络,从而在非常高的的活性物质负载量(15.9和12.4 mg/cm2)下,在室温25℃,可以实现低倍率0.1C的长期循环稳定。该工作近日发表在国际材料与能源领域顶级期刊Nano Energy(201849, 580p,影响因子为12.34)上。 这种通过将含锂离子的离子液体装载到MOF主体中来设计新颖的离子导体,并将其用于基于LLZO的固态电池中以降低界面电阻方法对于改善固态电解质与正负极之间的阻抗具有重要的借鉴意义,并且具有纳米润湿界面的离子导电剂为固态电池的制备也提供了新的思路。 该工作在潘锋教授指导下,由北京大学深圳研究生院新材料学院的王子奇博士后和王子剑博士生作为共同一作,在与团队紧密合作完成的。此工作的顺利开展得到了基于材料基因组的全固态电池国家重大专项、国家自然科学基金、中国博士后科学基金的支持。
  • 《北大在原位探测锂电池层状材料制备过程结构演化的研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-13
    • 锂离子电池(LIB)在便携式电子设备,电动车等领域有着广泛的用途。富Ni层状氧化物正极材料,由于能量密度高、成本低等特点,已成为最有应用前景的下一代LIB正极材料之一。然而,随着层状材料中Ni含量的增加,产生了许多相关的问题,如实际容量和理论容量相差大,热稳定性低,循环稳定性差等。 在高Ni层状材料中存在着独特的Li/Ni无序的现象,即,部分Li+离子占据了过渡金属(TM)层的3a位,而部分Ni2+离子占据了Li层的3b位。Ni2+在Li层的存在会极大阻碍了Li+离子的在充放电过程中的脱出和插入,从而降低材料的实际容量。因此,Li/Ni无序被认为是导致高Ni材料实际容量低的重要原因之一。长久以来,Li/Ni无序在合成过程中何时发生,为什么发生,这些疑问一直没有得到解答。 近日,北京大学深研院新材料学院潘锋教授课题组和美国Brookhaven国家实验室王峰教授课题组合作,针对这些问题通过同步辐射X射线原位探测锂电池富Ni层状氧化物正极材料在整个合成过程中的结构演化进行了深入系统的研究。研究中,采用多种同步辐射技术,包括X射线衍射(XRD),全散射(PDF)和吸收(XAS),在各种尺度下(长程和局域)对富Ni层状材料LiNi 0.77 Co 0.13 Co 0. 10 O 2 原位合成过程中的结构演化过程进行追踪。 " 图1 多模同步辐射X射线技术揭示高镍材料在合成过程中的长程拓扑相转变和局域多面体内的结构无序过程。 团队通过原位同步辐射XRD揭示了长程尺度上发生的从层状前驱体氢氧化物Ni 0.77 Co 0.13 Co 0. 10 (OH) 2 到层状氧化物LiNi 0.77 Co 0.13 Co 0. 10 O 2 的拓扑相转变过程,以及相伴发生的先Li/Ni无序再Li/Ni有序的局域结构变化过程;原位PDF和原位XAS相结合将局域八面体内的Li/Ni无序过程与过渡金属Ni/Co/Mn的氧化动力学关联起来,揭示了NiO 6 八面体的对称性破缺和重构是Li/Ni无序现象发生的根本原因。这一原位实验结果进一步被理论计算结果所验证。 这些发现揭示了高Ni层状材料结构无序的合成起源,为合成过程中降低甚至消除结构无序提供了理论指导,有望显著提升富镍材料的实际容量及能量密度。该工作近日发表国际在化学和材料领域的知名杂志在‘美国化学会志(Journal of American Chemical Society,DOI:10.1021/jacs.8b06150,影响因子为14.357)上。 该工作是在北京大学深圳研究生院新材料学院潘锋教授、美国Brookhaven国家实验室王峰教授、美国Argonne国家实验室Khlil Amine教授和美国国家同步辐射光源NSLS II白健明教授的共同指导下,由博士后张明建及相关人员一起完成。 .