《风能和太阳能发电的容量积分:西班牙的情况》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2019-05-15
  • 本文分析了西班牙电力系统中可再生光伏(PV),聚光太阳能(CSP)和风能技术的容量信用(CC)。该系统稳定地增加了可再生能源的份额,达到了超过30%的渗透率。 ENTSO-e的预测表明,到2030年,这一水平将增加到50%。因此,本文研究了不同的情景,以研究可再生整合的演变并评估对可靠性的相应贡献。考虑到可再生能源的季节性以及与可再生能源,故障问题和热力单元维护相关的不确定性,使用顺序蒙特卡罗(SMC)方法进行评估。 SMC的基线由西班牙系统的辐照度和风力数据的历史年度时间序列提供。在太阳能案例中,这些时间序列转换为具有CSP和PV生成模型的电力时间序列。前者包括不同的蓄热策略。对于风力发电,使用移动块自举(MBB)技术来生成新的风力时间序列。 CC使用标准可靠性指标(即负载预期损失(LOLE))基于等效公司容量(EFC)进行评估。结果表明,当西班牙电力系统在可再生能源发电中所占比例很高时,可再生能源对电力系统充足性的贡献很小。此外,将结果与类似研究的结果进行比较。

    ——文章发布于2019年12月

相关报告
  • 《发电侧储能的难点和支点》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-09-11
    • 8月27日,国家发改委、国家能源局发布“关于公开征求对《国家发展改革委国家能源局关于开展“风光水火储一体化”“源网荷储一体化”的指导意见(征求意见稿)》意见的公告”。征求意见稿指出,“风光水火储一体化”侧重于电源基地开发,应结合当地资源条件和能源特点,因地制宜采取风能、太阳能、水能、煤炭等多能源品种发电互相补充,并适度增加一定比例储能,统筹各类电源的规划、设计、建设、运营,积极探索“风光储一体化”,因地制宜开展“风光水储一体化”,稳妥推进“风光火储一体化”。   向新能源转型不仅是世界各国的能源发展趋势,更是我国的既定国策。习近平总书记在巴黎会议上庄严承诺,到2030年中国非化石能源在一次能源消费中的比重要达到20%。根据国家发展改革委能源研究所发布的《中国新能源发展路线图2050》,到2050年,太阳能发电量将达到21000亿千瓦时,也就是说,光伏发电量要在2018年的基础上提高近11倍。要实现这个目标,储能将是绕不开的话题。   两类储能各不同   发电侧储能并不是因为新能源发展而出现的新事物,是各种类型的发电厂用来促进电力系统安全平稳运行的配套设施。从累计装机容量来看,目前抽水蓄能方式份额最大,但电化学储能因为其响应速度快、布点灵活等优点,代表着未来的发展方向。根据中关村储能联盟数据,2019年5月至2020年7月,全球新增发电侧电化学储能项目113个,中国新增发电侧电化学储能项目59个。目前,电化学储能已经成为发电侧储能应用领域的重要方式。   当前我国发电侧储能从用途上看主要有两类。   第一类是火电配储能。主要是保障发电厂具有一定的调频调峰能力,提高火电机组的运行效率和电网稳定性。同时,在能源结构转型过程中深度挖掘火电的改造空间,拓宽火电的盈利方式。火电配电化学储能在我国已有广泛应用,山西、广东、河北都有发电侧火储联合调频项目。   第二类是新能源配储能。相比火电,风电和光伏的间歇性和波动性很大,为保证电力系统的整体平衡,往往造成部分地区“弃风弃光”现象。2019年,在新能源发电集中的西北地区,弃风率和弃光率仍然很高。例如,新疆的弃风率和弃光率分别是14%和7.4%。电化学储能作为新能源的“稳定器”,能够平抑波动,不仅可以提高能源在当地的消纳能力,也可以辅助新能源的异地消纳。   当下面临五大难点   尽管电化学储能在发电侧已经有很多示范项目,但在应用方面仍然有许多困难需要克服。在政策和运营层面,主要面临以下几方面的挑战:   一是传统电力市场给储能留下的空间不大。发电侧储能的收益直接来源于电力市场,因此电力市场的总体运行状况对储能的发展有着直接影响。   根据国家能源局的数据,截至2020年1月,我国电力装机总量在20亿千瓦左右,2020年1~6月全国总用电量为33547亿千瓦时。这说明我国存在电力生产过剩的情况。同时,我国还不断有用于调峰的火电(燃气机组)、新能源机组上马,装机总量不断上升,导致储能的作用难以体现。   相比欧美国家,我国的电力设施很多都是近些年修建的,基础设施更为“坚强”,具有相当的容纳能力。这就使得电网对储能所提供的辅助服务没有强烈需求。在美国,由于新建电厂的审批控制以及电网的老化,电力公司急需储能来平抑波动和满足扩容需求,在此基础上形成了对储能的大量需求。   二是储能作为辅助服务市场主体的资格不明确。储能的价值主要体现在它提供的辅助服务上,因此辅助服务市场的规制对储能的收益有着决定作用。在发电侧,电化学储能是作为发电厂机组的辅助设备运行的。作为机组的附属设备,电化学储能没有辅助服务市场独立的经营资格,由此导致电化学储能的收益具有很高的不确定性。由于很多发电侧的发电和储能是分开管理的,当政策变化时,由于没有主体地位,储能运营商可能没有多少谈判的能力,收益可能会进一步降低。   因此,发电侧储能的主体地位是个亟待解决的问题。目前,某些地区已经开始了这方面的尝试。例如,福建晋江的独立储能电站就拿到了“发电业务许可证”,以此为切入点让独立的发电侧储能进入电力市场。但即使如此,储能在市场中的身份和交易机制也不够健全。   根据2020年6月国家能源局福建监管办公室发布的《福建省电力调峰辅助服务交易规则(试行)(2020年修订版)》规定,独立储能电站的充电可以“采取目录峰谷电价或者直接参与调峰交易购买低谷电量”,放电时则“作为分布式电源就近向电网出售,价格按有关规定执行”。这就导致在调峰方面,储能的调峰收益更多是由计划和磋商决定的,充放电价的不明确给储能的收益带来很大的不确定性。即使在青海、湖北这样将电储能交易纳入调峰市场的省份,也只规定了储能电站充电时的交易机制,关于放电依然是“按照相关规定执行”。   除了以上的困难之外,由于储能在调频方面具有极好的性能,因此,储能的主体资格还面临着来自辅助服务市场内部成员的阻力。   三是辅助服务市场机制不完善。由于储能本身并不创造电能,因此储能的收益只能来自提供辅助服务的收费,而我国的辅助服务市场机制尚无法满足储能商业化运行的要求。   我国目前的辅助服务机制要求发电侧“既出钱又出力”,也就是要求并网发电企业必须提供辅助服务,同时辅助服务补偿费用要在发电企业中分摊。通过从这些企业中收取一部分资金,加上一部分补贴,形成一个资金池。调度中心根据各辅助服务主体的绩效打分,来决定发电企业能从这个资金池中收回多少份额。   以2019上半年为例,我国电力辅助服务总费用共130.31亿,占上网电费总额1.47%。其中发电机组分摊费用合计114.29亿,占87.71%。如此制度设计就决定了辅助服务市场基本是一个“零和博弈”,辅助服务的价值并没有得到很好的体现。   因此从发电厂的角度来看,如果大家都通过配套储能来提供辅助服务,那么会出现发电厂收益并无变化而成本却提高很多的问题,进而使发电厂缺乏安装储能设施的动力,这也是造成储能项目多是示范工程的原因。即使宏观政策支持发电侧储能的发展,这样的辅助服务机制也很难给发电侧提供正向激励。在辅助服务市场没有建立起来的情况下,储能的收入来源十分单一,很难达到商业运行的要求。   四是储能标准缺位。我国电化学储能行业近几年才初具规模,储能电池还没有国家层面的标准规范。在没有确定标准的情况下,储能电池的回收和梯级利用也难以有效实施。例如,部分地区在探索退役动力电池应用于储能领域,但储能电池的要求和动力电池有很大不同,错误的梯级利用不仅带来效率方面的问题,更严重的是存在安全隐患。而且,相关法规的确缺失,可能会导致储能电池出现像铅蓄电池一样的回收乱象。   五是运营问题。储能的运营问题主要在于储能的容量和成本。现有的发电侧储能项目容量一般在10~200兆瓦时之间,多数不超过100兆瓦时,考虑到未来新能源装机容量越来越大,这样的储能规模显然难以充分助力新能源消纳。现有的电化学储能可以通过技术手段轻松增加容量,当然,随之而来的安全问题也需要高度关注。   电化学储能的成本问题更是储能难以大规模投入的重要原因之一。以光伏发电为例,在西北等光伏资源丰富地区,虽然已经可以做到平价上网,然而配套储能设施如果没有相应的激励或者补贴政策,发电成本就会大大提高。再考虑到设备的衰减和老化问题,成本的回收会更加困难。   因此,目前在没有明确且足够的政策补贴时,电化学储能难以大规模地投入使用。   未来需要四大支点   尽管电化学储能有以上的种种限制,它的前景却是明朗的。随着我国能源转型以及电力市场改革的不断深化,电化学储能未来的定位会越来越清晰,应用的价值也会越来越得到体现。   第一,提高消纳能力   未来新能源发电会占有越来越大的比例。与此共生的消纳市场给电化学储能带来了广阔的发展空间。一方面,新能源配储能可以帮助解决新能源在当地的消纳问题,储能能帮助风电和光电摆脱“垃圾电”的影响。更重要的是,由于我国的风、光资源主要集中在西北部,而需求负荷主要集中在沿海地区。如果未来要更多地依靠新能源,那么电力的跨地区转移就是一个必须解决的问题。这也是特高压进入我国“新基建”计划的一个原因。通过特高压,大量的新能源电力可以转移到沿海区域而中途没有过多的损失。   第二,扩大电力市场容量   随着电力市场改革的不断深入,在价格机制的引导下,未来新电厂的建设会放缓。同时,用电需求仍然会不断上涨。考虑到电网的经济性,相比于建设新的电厂,未来更多的关注点会集中在电力系统的优化方面。例如通过合理的削峰填谷、需求响应来解决电力市场的扩容问题。   在这方面,电化学储能由于其快速的响应能力,在未来的电力容量市场中具有相当大的潜力。如果通过EMS(能源管理系统)能让储能在容量市场充分发挥其作用,那么扩容问题能得到部分解决。   第三,促进市场价格机制形成   本着“谁受益,谁承担”的原则,目前的辅助服务成本分配方式不尽合理。国家发展改革委、国家能源局在不久前发布的《关于做好2020年能源安全保障工作的指导意见》中指出:“进一步完善调峰补偿机制,加快推进电力调峰等辅助服务市场化,探索推动用户侧承担辅助服务费用的相关机制,提高调峰积极性。推动储能技术应用,鼓励电源侧、电网侧和用户侧储能应用,鼓励多元化的社会资源投资储能建设。”如此,让所有受益的市场主体,都来承担辅助服务成本,辅助服务的价值才能在市场中得到较好的体现。发电侧储能将有更大的积极性在应用方面进行尝试和投入,电力用户也会根据市场价格进行需求的自我调整,从而提高电力系统的整体运行效率。   第四,对生态环境影响小   在不同的储能方式之间,电化学储能在环境保护方面也有其优势。以抽水蓄能为例,一般需要在山地环境下建设上下水库、安装大型发电机组,电站建设运行可能会对周围的生态环境产生影响。而电化学储能在选址上没有抽水蓄能那么多的地理限制条件,且占地面积小很多。以晋江储能电站为例,总占地面积10887平方米,以围墙内面积计算,全站能量密度为42.5千瓦时/平方米。在电化学储能应用和回收技术不断进步的情况下,预计对于生态环境的影响会远小于抽水蓄能。 
  • 《日本着力提高太阳能光伏发电的能效》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2021-12-02
    • 改善日照条件,降成本、增能效就成为日本发展太阳能光电的关键问题。除扩大太阳能光伏发电的规模、增加其用地以外,更重要的是依靠科技力量不断提高太阳能光伏发电的能效。为此,日本的科研机构和企业正在致力于研发进一步提高太阳能光伏发电能效的技术和装置。 11月13日,《联合国气候变化框架公约》第26次缔约方大会(COP26)在英国的格拉斯哥闭幕,大会就《巴黎协定》实施细则等核心问题达成共识,标志着世界各国踏上全面应对气候变化的新征程。 日本首相岸田文雄在11月1日本国大选结束后的第二天便赶赴英国出席COP26世界领导人峰会并发表讲话,重申了前首相菅义伟在4月22日由美国主办的领导人气候峰会上宣布的日本减排目标:到2030年温室气体排放量比2013年减少46%,并努力挑战更高的50%,2050年实现碳中和。 日本要实现这一承诺目标,关键需要加大力量实现电力行业的减排。今年1月日本经济产业省公布的《2050年碳中和绿色增长战略》显示,电力行业仍然较多地依靠传统的燃煤燃气发电,二氧化碳排放量占比为37%,居各行业之首,日本也因此在COP26会议期间被全球环保团体“气候行动网络”颁发“石化奖”。 为解决这一减排关键难题,按时兑现减排目标,日本政府10月22日公布的第6版《能源基本计划》首次提出“最优先”发展可再生能源,提出到2030年可再生能源发电量的占比将达到36%~38%,大幅高于2018年公布的第5版计划所提出的22%~24%的目标。2019年日本的可再生能源占比仅为18%,因此需要加倍的努力,方能兑现承诺的减排目标。 1.将太阳能作为可再生能源的“主力军”。 可再生能源发电主要包括水能、风能和太阳能。 首先看水力发电,日本由于燃料资源匮乏,水力则成为其本土的主要发电资源。过去一个时期日本积极发展水电,1960年水电占比超过50%。后因进口石油价格低廉,转而积极发展火电,加之上世纪70年代大力发展核电,遂水电占比逐年下降,至2009年仅占6%。要在已经废弃的水电基础上重振水电,恐非日本的明智之选。 另外,气候变化引发的自然灾害及其次生灾害也是考量发展水电利弊的不可忽视的要素。例如,今年夏季巴西遭遇91年来最严重的旱灾,给水电敲响了警钟。 巴西可再生能源发电装机总量居南美国家之首,其中水电占比76.8%。据报道,这场旱灾导致巴西的水电站蓄水量严重不足,多座水电站无法足额发电,继而引发电价攀升,迫使巴西政府采取提高燃气等能源的价格、限电等措施。 巴西的这场旱灾及其引发的水电危机再次绷紧了世界畏惧气候变化的神经,使各国重新审视水力资源作为可再生能源发电的利弊,日本也或会从中有所汲取。 同样受气候变化捉弄的还有风能发电。风电是欧洲各国为实现减排目标发展可再生能源发电的重要选项之一,但是,今年夏季以来欧洲的风量减弱,使欧洲的风电遭受打击。受“风灾”影响今夏欧盟的风电总量比去年减少7%,其中西班牙是“重灾区”。 西班牙被誉为“脱碳先进国家”,在其电能结构中,风电占据20%的较大比例。受此次“风灾”影响,9月份的风电量比去年同期减少20%。由于受灾减少的电力需要由只占30%的天然气火电来弥补,所以引起了西班牙的天然气价格和电价暴涨,9月份生活用电价格同比上涨35%。西班牙的“风灾”及其次生灾害的影响深度波及欧洲,一定程度助推了欧洲的能源危机。 一般认为太阳光同样会受气候变化的左右,冬季光照减少,太阳能光伏发电量随之下降。例如,去年12月至今年1月日本曾一度供电紧张,其原因被指“光电量减少”。但是,日本经济产业省的实证结果表明,太阳光(对光伏发电)的影响几乎可以忽略不计,主要原因是枯水期导致水电量下降。因此,太阳能光伏发电受气候变化的影响比我们想象的少得多。 鉴于以上巴西的水电和西班牙的风电以及日本的光电典型案例,日本的第6版《能源基本计划》将36%~38%的可再生能源比例划分为:太阳能14%~16%、风能5%、水能11%,这一配比不无道理。从这一比例可以看出,日本将太阳能确定为可再生能源的“主力军”。 2.依靠科技力量提高太阳能光伏发电的能效。 据中国能源信息平台的资料,截至2019年日本的太阳能光伏发电装机达到6184万千瓦,仅占当时可再生能源的7.2%,未来有很大的发展空间。但是,日本的太阳能光伏发电低能效以及由此产生的电价过高等问题,是阻碍太阳能光伏发电发展的瓶颈。 为解决这一瓶颈问题,日本政府于2009年11月就启动了“太阳能发电富余电量收购制度”,并于2012年7月1日开始实行“固定电价收购政策”,以鼓励企业和民间大力发展和使用包括太阳能在内的可再生能源发电。这些政策有效促进了可再生能源发电领域的投资,到2018年底,可再生能源发电装机增长了4600万千瓦,其中居民太阳能光电增长了583万千瓦,非居民太阳能光电增长了3722万千瓦。 为了降低太阳能光电的收购价格,日本政府从2017年开始对2兆以上容量的太阳能光伏发电实施竞价机制。通过竞价,中标价由2017年11月的17.2~21.0日元/千瓦时下降至2019年9月的10.5~13.99日元/千瓦时。 尽管日本官方、企业和民众为发展太阳能光伏发电作出了一系列的努力,但是,其太阳能光伏发电的成本仍然较大幅度地高于美国、中国等国家。根据国际可再生能源机构(IRENA)的统计,日本的太阳能光伏发电的成本为1千瓦时/13.5日元,是中国(5日元)、美国(6.5日元)的2倍多,比法国和德国高出80%。 因此,改善日照条件,降成本、增能效就成为日本发展太阳能光电的关键问题。除扩大太阳能光伏发电的规模、增加其用地以外,更重要的是依靠科技力量不断提高太阳能光伏发电的能效。为此,日本的科研机构和企业正在致力于研发进一步提高太阳能光伏发电能效的技术和装置。 据日本学者藤和彦撰文介绍,东京大学先端科学技术研究中心冈田至崇教授的研究小组正在研发利用量子点理论完成光电转换的“量子点太阳电池”。 据科技资料介绍,量子点太阳能电池是第三代太阳能光伏电池,也是最新、最尖端的太阳能电池之一,在普通太阳能电池之中引入纳米技术与量子力学理论。与其他吸光材料相比,量子点具有独特的优势:量子尺寸效应。通过改变半导体量子点的大小,可以使太阳能电池吸收特定波长的光线,即小量子点吸收短波长的光,而大量子点吸收长波长的光,增大了吸收系数,提高了光电转换效率。大量理论计算和实验研究表明,量子点太阳能光伏电池在未来的太阳能转换电能中显示出巨大的发展前景。 另外,日本爱知县一宫市的一家风投企业(MCCQUANTA)研发出一种装置,安装在现有的太阳能光伏板可提高其2倍的发电能效,并于10月下旬批量生产。 这一装置也是通过应用量子现象,更多地提取太阳光照射在光伏板产生的电子,以提高光电转换的能效。据称,这一装置如果被广泛使用,“即使不增加用地也可增加2倍的发电量,还可降低一半的成本”。 COP26期间,与会领导人签署了《格拉斯哥气候公约》。公约要求各国加紧努力,逐步减少不使用技术控制二氧化碳排放的发电厂,倡导可再生能源发电,并呼吁结束低效的化石燃料补贴。 当今世界减碳、绿色、可再生已经成为潮流,在潮流的推动下,在目标的引导下,在政策的支持下,无论是日本,还是世界各国,都将有越来越多的资源源源不断地涌入减碳、绿色、可再生领域,鼓励、支持、推动更多的科研人员和企业研发出更多、更好、更高效的可再生能源产品,保护地球,造福人类。