许多活体生物传感应用需要灵活的生物传感器。在这些应用中,灵活的生物传感器需要被正式地附着在生物体的曲面上,并在各种压力条件下进行操作。新兴半导体层(如。MoS2和WSe2)是制造超灵敏的柔性纳米电子生物传感器的很有吸引力的材料。然而,这样的生物传感器也对外界的压力和压力很敏感,并且很容易造成错误的读数或损坏。为了解决这一难题,作者们利用一种基于牺牲的结构辅助的纳米技术,在柔软的基板上制造了预弯曲的MoS2结构。该方法允许精确控制弯曲曲率和预弯MoS2结构的位置。有限元分析结果表明,由于基板的应变条件相同,从基板上转移到这种预弯MoS2结构的应变比转移到平面的MoS2结构要小1000倍。对前弯曲的MoS2电阻生物传感器的电导测量结果也与仿真结果一致。具体来说,当预弯曲的生物传感器被基质弯曲到0.1/毫米时,电导的相对变化在10%以内,而控制(扁平的)MoS2的生物传感器则表现出了更大的电导变化,甚至在0.08/mm的曲率下被永久地破坏了。作者能够实现prebent二硫化钼生物传感器检测限制低至10∼femtomolar(fM)和高灵敏度(−1.3% / fM)femtomolar-level白介素1测试版(IL-1β)浓度和展示他们使用IL-1β检测/量化。这些生物传感器可用于快速飞飞的il-1量化,其总潜伏期为20分钟。它们还支持对绑定动力学的时间依赖性监测。这项工作利用现有的技术和科学应用,使基于新兴分层半导体的灵活的可穿戴生物传感设备。
——文章发布于2017年10月