《我国科学家研究揭示绿藻光系统I高效捕获及传递光能的分子机制》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2019-03-19
  • 3月8日, Nature Plants 杂志在线发表了中国科学院科学家团队——生物物理研究所常文瑞/李梅研究组与章新政研究组的合作研究成果,题为 Antenna arrangement and energy transfer pathways of a green algal photosystem I-LHCI supercomplex ,该项工作首次报道了莱茵衣藻光系统I-捕光复合物I(PSI-LHCI)超级复合物的高分辨率冷冻电镜结构,提供了精确的衣藻PSI-LHCI结构模型,展示了其各亚基的组装和色素排布方式,揭示了其高效的光能捕获和能量传递的分子机制。   

    放氧光合作用利用太阳能产生氧气及碳水化合物,为地球上几乎全部生物提供生存的基础。放氧光合生物(包括植物、真核藻类和蓝藻)有两个光系统,分别是光系统I(PSI)和光系统II(PSII)。植物和藻类中的光系统I是由核心复合物和外周的捕光蛋白复合物(LHCI)组成的多亚基膜蛋白-色素复合物,其通过外周天线吸收光能,传递到核心,驱动电子传递,并最终将电子提供给ferredoxin生成NADPH。在进化过程中,不同物种的PSI核心是相对保守的,但外周捕光天线系统差异很大,尤其是绿藻的光系统I的外周天线系统更为多变。对绿藻模式生物莱茵衣藻的研究表明,其光系统I的天线系统相比于其它真核藻类和植物来说更大也更为复杂,可能结合多达10个捕光天线蛋白,而高等植物的光系统I核心只稳定结合4个LHCI,低等红藻光系统I中也只有3或5个天线蛋白。研究表明,虽然衣藻PSI-LHCI的捕光天线系统更为庞大,但它与植物PSI-LHCI具有相似的平均荧光寿命,表明衣藻PSI-LHCI中捕光天线向核心的激发能传递效率更高。到目前为止,来源于红藻及高等植物的PSI-LHCI复合物都已经有高分辨率的结构,但尚缺乏来源于绿藻的PSI-LHCI的高分辨率结构信息,对衣藻PSI-LHCI复合物的结构研究将有助于深入了解其高效捕获和传递能量的途径和机制。   

    生物物理所研究团队通过单颗粒冷冻电镜技术解析了来源于衣藻的两种不同的PSI-LHCI超级复合物的精细结构,结构中PSI核心分别结合8个或10个捕光天线蛋白,其分辨率分别达到2.9埃 (PSI-8LHCI)和3.3埃(PSI-10LHCI)。两种类型的复合物均在核心复合物的一侧结合有8个捕光天线蛋白,分为两层排列,该工作通过结构生物学手段,首次直接确认了这8个捕光天线蛋白的身份及定位,并指认了18个蛋白亚基,216个叶绿素,48个类胡萝卜素及其他一些辅因子。在PSI-10LHCI结构中,核心复合物的另一侧还结合了两个捕光天线,结构中共构建了23个蛋白亚基,这也是迄今为止解析的最大的PSI-LHCI(约750kDa)结构。结构分析表明,相比于植物PSI,衣藻PSI的每个捕光天线结合更多的叶绿素,且色素分子间形成更多的能量传递通路,因而更有利于光能的捕获和激发能的快速传递。上述研究结果对于在分子水平上理解光系统I超级复合物中的光能捕获和传递的分子机制具有重要意义。   

    生物物理所研究员李梅和章新政为该工作的共同通讯作者,副研究员苏小东、马军和潘晓伟为该项工作的共同第一作者,中国科学院院士常文瑞、研究员柳振峰和赵学琳参与了该项研究工作。该研究工作得到科技部重点研发计划、中国科学院B类先导专项、中国科学院前沿科学重点研究项目、国家自然科学基金、国家“青年相关人才计划”和中国科学院青年创新促进会的共同资助。数据收集和样品分析等工作得到生物物理所“生物成像中心”和蛋白质科学研究平台等有关工作人员的支持和帮助。

相关报告
  • 《我国科学家在硅藻特有捕光天线蛋白复合体结构研究中取得突破》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-02-28
    • 硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约 20% 的原初生产力,且在地球的元素循环和气候变化中发挥重要作用,这与硅藻特有的捕光天线蛋白“岩藻黄素 - 叶绿素 a/c 蛋白复合体”( Fucoxanthin chlorophyll a/c protein , FCP )的功能密切相关。硅藻的 FCP 复合体具有出色的蓝绿光捕获能力和极强的光保护能力,这是硅藻能够在海洋中繁盛的重要原因之一。    硅藻的 FCP 复合体属于捕光天线蛋白复合体( Light harvesting complex , LHC )超级家族,但其氨基酸序列与高等植物和绿藻的叶绿素 a/b 捕光天线蛋白的同源性很低,而且最为突出的是 FCP 结合大量岩藻黄素和叶绿素 c ,能够捕获蓝绿光以适应水下弱光环境。同时, FCP 结合的岩藻黄素和硅甲藻黄素参与建立硅藻的超级光保护机制可以帮助这种浮游生物适应海水表面的强光环境。然而硅藻 FCP 复合体的结构长期没有得到解析,限制了硅藻光合作用机理的研究。    中国科学院科学家团队——植物研究所沈建仁和中国科学院院士匡廷云团队一直致力于高等植物和藻类捕光天线蛋白的研究工作,通过多种手段解析了一种羽纹纲硅藻 —— 三角褐指藻( Phaeodactylum tricornutum ) FCP 二聚体 1.8埃 的晶体结构。研究人员发现,每个 FCP 单体中结合 7 个叶绿素 a 、 7 个岩藻黄素、 2 个叶绿素 c 、 1 个硅甲藻黄素和一些脂类及去垢剂分子;每个叶绿素 c 分子分别与 2 个叶绿素 a 分子成簇,并与其中一个叶绿素 a 分子紧密耦合,叶绿素 c 的原卟啉环结合在叶绿素 a 和岩藻黄素之间;每个叶绿素簇内部的叶绿素距离都在 3.5埃 左右,可以使能量快速高效地传递; FCP 二聚体内部的叶绿素距离都在 10埃 以内,使激发能达到快速的平衡和传递。    研究人员还发现, FCP 单体中有 6 个岩藻黄素分子插入到光合膜内,另 1 个新型的岩藻黄素分子水平结合在膜表面,这拓展了类胡萝卜素在捕光天线蛋白中的结合方式,提高了其绿光捕获能力;所有岩藻黄素与叶绿素距离都在 4埃 之内,使其捕获的光能可以高效地向叶绿素传递,同时也可能使岩藻黄素成为光保护的有效成员;硅甲藻黄素分子与 FCP 蛋白结合较弱,以便于参加到硅藻的类胡萝卜素循环中,进而使得硅藻适应从水下到水面的快速剧烈的光环境变化。    该研究首次描绘了叶绿素 c 和岩藻黄素在硅藻光合膜蛋白中的结合细节,阐明了叶绿素和岩藻黄素在 FCP 复合体中的空间排布,揭示了叶绿素 c 和岩藻黄素捕获蓝绿光并高效传递能量的结构基础;首次揭示了 FCP 二聚体的结合方式, 对几十年来硅藻主要捕光天线蛋白聚合状态研究提供了第一个明确的实验证据。研究成果为揭示光合作用光反应拓展捕光截面和高效捕获传递光能机理,以及硅藻超强的光保护机制提供了坚实的结构基础;为实现光合作用宽幅捕获和快速传递光能的理论计算提供了可能,为人工模拟光合作用机理提供了新理论依据;为指导设计新型作物、拓展捕光截面、防止光破坏提供了新思路和新策略。    该研究成果于 2 月 8 日在国际学术期刊《科学》( Science ) 以长文( Online Research Article )形式发表,文章题为 Structural basis for blue-green light harvesting and energy dissipation in diatoms 。匡廷云与沈建仁为论文通讯作者,王文达和于龙江为论文共同第一作者。 该项目得到日本冈山大学的合作研究支持,并得到上海同步辐射光源、日本 SPring-8 和 KEK 同步辐射光源、瑞士 SLS 同步辐射光源的技术支持。中国科技部国家蛋白质重点研发计划、中组部人才项目以及中国科学院先导专项、前沿重点项目和院长基金提供了经费支持。 三角褐指藻类囊体膜上的 FCP 二聚体晶体结构。 a 和 b : FCP 蛋白晶体;蛋白中的叶绿素 a (绿色),叶绿素 c (洋红色)和岩藻黄素分子结构分别以棍状图显示,蓝色为硅甲藻黄素。
  • 《硅藻光合作用特有的光能高效捕获和光保护机制研究取得重要突破》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-04-02
    • 硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约20%的有机物生产力,相当于固定了近五分之一的二氧化碳,高于全球所有热带雨林的贡献,这与硅藻特有的捕光天线蛋白“岩藻黄素-叶绿素a/c蛋白复合体”(Fucoxanthin chlorophyll a/c protein,FCP)的功能密切相关。硅藻的FCP复合体属于捕光天线蛋白复合体(Light harvesting complex,LHC)超级家族,但其氨基酸序列与高等植物和绿藻的叶绿素a/b捕光天线蛋白的同源性很低,而且最为突出的是FCP结合大量岩藻黄素和叶绿素c,能够捕获蓝绿光以适应水下弱光环境。同时,由FCP结合的岩藻黄素和硅甲藻黄素参与建立的硅藻超级光保护机制,可以帮助硅藻适应海水表面的强光环境。然而,硅藻FCP复合体的结构长期没有得到解析,限制了硅藻光合作用机理的研究。   在国家重点研发计划 “蛋白质机器与生命过程调控”重点专项“光合作用重要蛋白质机器的结构、功能与调控”项目(2017YFA0503700)的资助下,中国科学院植物研究所沈建仁研究组首次解析了一种羽纹纲硅藻——三角褐指藻(Phaeodactylum tricornutum)FCP的高分辩率(1.8 ?)晶体结构,描绘了叶绿素c、岩藻黄素及硅甲藻黄素在蛋白复合体中的结合细节及空间排布,揭示了该蛋白复合体高效捕获蓝绿光及其超强光保护功能的结构基础。该研究为实现光合作用光能宽幅、高效捕获和快速传递的理论计算提供了实验依据,为光合作用人工模拟及设计具有宽广的捕光截面和较强的抗光破坏能力的新型作物提供了新思路和新策略。该研究成果近期在Science杂志发表。