《【iNature】Nature | 加州理工学院团队揭示脑-体轴新机制,交感神经系统的特异性调控》

相关报告
  • 《加州理工学院(Caltech)研究团队成功研制超高效微型激光频率芯片》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-09-15
    • 能够覆盖宽频段的聚焦激光光源,在半导体电子芯片制造质控等众多科学研究和应用领域都具有重要价值。然而,除却体积庞大、能耗惊人的台式设备外,创造这种宽带相干光源一直难以实现。 近日,加州理工学院(Caltech)电气工程与应用物理学教授Alireza Marandi带领团队,成功在微型芯片上研制出了一种可超高效生成异常宽频激光的微型装置。这项突破性技术将在通信、成像及光谱学等领域展现应用潜力——在光谱分析中,这种光源将助力多种环境下的原子与分子检测。 研究人员在《Nature Photonics》期刊发表的论文中阐述了这种新型纳米光子器件及其技术路径。论文第一作者是Ryoto Sekine(2025届博士),他在马拉迪实验室攻读研究生期间完成了该项研究。 Marandi表示:"我们首次证明,仅需单个纳米光子器件和低至飞焦耳量级的输入能量,就能覆盖从可见光到中红外波段的广阔电磁频谱。这是前所未有的技术突破。" 该装置采用自1965年问世的成熟技术——光学参量振荡器(OPO)。本质上,OPO是一种谐振器,即通过精密设计的微型光阱。它接收特定频率的输入激光,并利用铌酸锂特殊非线性晶体的特性,通过精密工程设计生成不同频率的光。 传统光学参量振荡器(OPO)通常以窄频激光源作为输入,虽能产生不同频率的输出,但其输出范围仍受限。这类装置主要作为类激光源使用,以其高度可调谐的输出频率著称。 光频梳技术突破 在这项研究中,Marandi团队通过纳米级芯片集成技术,对OPO进行革新性设计,成功实现了光频梳效应——这是一种仅需极低输入能量,就能产生覆盖宽频段的等间距类激光光谱。该光频梳的光谱范围令人惊叹,从人眼可见的可见光波段一直延伸至更长波长的中红外区域,提供锐利且稳定的光谱线。 光频梳技术曾助力两位科学家荣膺2005年诺贝尔物理学奖。与发射单一色光的传统激光器不同,光频梳如同跨越多个频段的光学标尺,该技术已广泛应用于提升原子钟精度、光精密测量以及环境监测等领域。 Marandi指出:"光频梳技术始终面临两大挑战:一是光源体积过大,二是难以实现特定光谱窗口的定制化生成。我们的研究为同时解决这两个难题提供了可行路径。" 该装置的核心突破在于被Marandi称为"色散工程"的技术创新——通过精密调控不同波长光在器件中的传播路径,确保光波保持同步而非扩散。结合精心设计的谐振腔结构,这些突破使器件能够以极低阈值(即启动所需能量)高效拓宽光谱范围并保持相干性。 "超宽相干光谱的意外突破" Marandi坦言其团队对器件性能感到惊讶:"当我们启动装置并逐步提升功率时,发现生成的光谱范围异常宽广。更令人惊讶的是,如此超宽光谱竟然保持着相干性——这完全颠覆了教科书对OPO工作原理的传统描述。" 这一发现促使研究团队重新进行模拟计算与理论推演。模拟结果显示,当输入能量超过阈值时,光谱理应失去相干性——即出现波长混杂且相位失锁的状态,无法生成光频梳。但实验室实测数据却显示,在远超阈值的工况下,光谱依然保持相干性。 Marandi透露:"我们耗时约六个月才揭示出OPO的全新工作机制——在远超阈值时仍能重建相干性。由于这款OPO的阈值比传统装置降低了数个数量级,加之独特的色散工程与谐振腔设计,我们才能观测到这种现象级的光谱展宽效应,其能效比其他光谱展宽方案高出数个数量级。" 研究人员指出,这项突破有望重塑光频梳技术的应用范式——当前基于台式设备的系统将向集成光子器件转型。构建稳定光频梳的核心技术需要大幅展宽光谱,而所需能量一直是阻碍光频梳技术芯片化集成的瓶颈之一。 更重要的是,现有光子技术(包括最成熟的分子测量激光器与探测器)多工作在近红外或可见光波段。新型OPO装置以近红外激光为输入频率,通过高效光转换输出中红外相干光,将使科研人员(如光谱学领域工作者)能够获取低频区域的丰富信息。与此同时,该器件还能为原子光谱学研究开辟更高频段的探测能力。 论文题为《Multi-Octave Frequency Comb from an Ultra-Low-Threshold Nanophotonic Parametric Oscillator》(DOI:10.1038/s41566-025-01753-7)。合著者包括加州理工学院前研究生Robert M. Gray(2025届博士)、Luis Ledezma(2023届博士),现研究生Selina Zhou及前博士后研究员Qiushi Guo。器件纳米加工工艺由加州理工学院卡弗里纳米科学研究所完成。研究获得陆军研究办公室、国家科学基金会、空军科学研究办公室、国防高级研究计划局(DARPA)、加州理工学院传感与智能中心以及由加州理工学院为NASA管理的喷气推进实验室(JPL)共同资助。
  • 《研究揭示在DNA复制期间保护复制叉新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-08
    • 在DNA复制期间,复制叉遇到的问题不断威胁着基因组的完整性。BRCA1、BRCA2和一部分范科尼贫血蛋白(Fanconi anaemia protein)通过涉及RAD51的途径保护停滞的复制叉免受核酸酶的降解。BRCA1在复制叉保护中作出的贡献和发挥的调节作用以及这种作用如何与它在同源重组中的作用相关联在一起,仍然是不清楚的。 在一项新的研究中,来自英国伯明翰大学和帝国理工学院的研究人员发现BRCA1与BARD1形成的复合物而不是经典的BRCA1–PALB2相互作用是复制叉保护所必需的。相关研究结果于2019年7月3日在线发表在Nature期刊上,论文标题为“Isomerization of BRCA1–BARD1 promotes replication fork protection” BRCA1–BARD1受到磷酸化指导的脯氨酰异构酶PIN1介导的构象变化的调节。PIN1活性增强BRCA1–BARD1与RAD51之间的相互作用,从而增加RAD51在停滞的复制叉结构中的存在。 这些研究人员在患有表现出对新生链较差保护但保留同源重组能力的癌症的患者中鉴定出BRCA1–BARD1的遗传变异,因而确定了复制叉保护所必需的和与癌症产生相关的BRCA1-BARD1结构域。 综上所述,这些发现揭示出一种由BRCA1介导的途径控制着复制叉保护。