《石墨烯纳米片用于化疗药物和生物药物传递》

  • 来源专题:重大新药创制—研发动态
  • 编译者: 杜慧
  • 发布时间:2016-04-15
  • 石墨烯纳米片 (GNS),包括石墨烯、 氧化石墨烯和还原氧化石墨烯,适用于各种分子的传递。石墨烯纳米片是二维结构的,因此其比表面积相对较高,且与不同分子可形成较强的非共价π-π堆积效应和疏水作用。目前,基于GNS 的药物传递主要用于化疗药物和生物药物,包括核酸、 蛋白质和多肽。GNS 表面已被各种聚合物修饰,如聚乙二醇和生物大分子,这可以提高其生物相容性和载药量。抗癌药物是化疗药物中主要测试项目,相比其他纳米载体,GNS 具有相对较高的载荷能力。为促进GNS分布到特定组织,采用包括叶酸、 转铁蛋白在内的靶向配体对GNS进行了共价或非共价修饰。本篇文章中,我们以核酸药物为重点,描述了GNS在抗癌化疗药物和生物药物传递中的应用。此外,也讨论了GNS的应用前景和面临的挑战。

相关报告
  • 《壳聚糖覆盖了Fe3O4/还原氧化石墨烯纳米复合材料,用于靶向药物传递、成像和生物医学应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-05
    • 自然于2020年11月03日发布关于石墨烯纳米复合材料的内容。本研究报道了一种可同时用于癌症靶向荧光成像和体外靶向药物传递的混合直接纳米系统。以还原氧化石墨烯(还原氧化石墨烯)包覆壳聚糖(CS)聚合物,并植入Fe3O4纳米粒子。通过FT-IR、XRD、FE-SEM、HR-TEM、XPS、VSM等分析,确定了基本的物理化学性质。在斑马鱼体内的毒性研究表明,纳米复合材料无毒。抗肿瘤药物阿霉素在还原氧化石墨烯/Fe3O4/CS纳米复合材料中的体外载药量为0.448 mg/mL - 1。此外,用叶酸观察ph调节的释放。细胞摄取和多模态成像显示,叶酸偶联纳米复合材料作为药物载体,可显著改善肿瘤细胞过表达叶酸受体中阿霉素的积累。与其他材料相比,还原氧化石墨烯/四氧化三铁/碳纳米复合材料具有更好的抗生物膜和抗氧化性能。这项研究的结果支持了纳米复合材料在靶向化疗中的应用,以及在聚合物、化妆品、生物医学和食品工业中的潜在应用。
  • 《纳米聚合物用于智能药物传输系统》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-12
    • 聚合物材料已经彻底改变了生物材料的世界。由于其优越的性能,大量的工作已被做集成聚合物纳米粒子与智能药物传输系统。 聚合物在药物传递中的概述 聚合物材料具有多种特性,使其成为理想的生物应用材料,特别是在药物传递系统中。这些材料除了相对容易设计和制备外,还具有良好的生物相容性和生物计量性能。当聚合物与药物传递系统结合时,已经证明了其独特的能力,能够有效地将治疗药物传递到指定的目标组织。 聚合物人们 最近的一些研究工作涉及到用于药物传递的聚合物纳米颗粒,重点是将这些材料用作药物载体。当用作纳米载体时,天然、半合成和合成性质的聚合物材料被称为球体和/或胶囊。与任何智能药物递送系统一样,聚合物纳米载体已被证明能够提供疏水药物的位点特异性靶向,同时提高药物的生物利用度和控释度。 在已被研究的各种基于纳米技术的系统中,聚合物纳米载体引起了相当大的关注。科学家们已经成功地控制了聚合纳米载体的核-壳结构,使其既能封装药物,又能将药物与核结合。 聚合物纳米载体不仅在健康组织和被包裹药物之间提供了保护屏障,而且改善了药物的药代动力学,增强了被包裹药物直接进入肿瘤的积累。 中枢神经系统障碍 血脑屏障是由与中枢神经系统内皮细胞紧密连接形成的一种物理屏障,控制和限制物质进入大脑的通道。虽然血脑屏障可以保护大脑免受病原体和潜在的神经毒素的侵袭,但它也极大地限制了治疗药物进入大脑治疗中枢神经系统疾病的途径。 为了克服这些挑战,人们研究了几种不同类型的纳米颗粒载体,其中包括金属、聚合物、脂质和靶向纳米颗粒载体。 与金属纳米颗粒相比,聚合物纳米颗粒更柔软、更灵活、密度更低,这使得这些颗粒在治疗性药物封装时更具延展性。 聚合物纳米粒子的大小、表面电荷和纵横比等各种性质可以改变,以满足各种药物的需要。为了穿过血脑屏障,聚合物纳米颗粒要经历一个称为内吞作用的过程,这个过程涉及到纳米颗粒被接受细胞的细胞膜吞噬。 一些研究也研究了不同的方法,例如添加内源性物质使聚合纳米载体的表面功能化,以进一步增强封装药物的位点特异性递送到大脑。 口服给药 口服给药是最简便的给药方法之一。这种方法不仅对患者无痛,而且是一种成本效益高的解决方案,具有有限的无菌限制,因此可以很容易地生产。 不幸的是,口服给药往往会导致药物的生物利用度较差,这是由于药物在酶环境(如胃内环境)中的水溶性、膜渗透性和稳定性。因此,这些限制限制了口服药物的种类,当这些药物必须通过其他方法,如静脉注射或腹腔注射时,这就导致了患者依从性差。 已经开发了几种不同的聚合物纳米技术来促进各种药物的口服,其中包括化疗药物、单链RNA (siRNA)和用于治疗炎症性肠病的小分子药物,以及用于糖尿病患者的胰岛素。 尽管这些研究仍处于临床前的发展阶段,但它们已经显示出了巨大的临床应用潜力。