《北京大学等研制出基于超大规模集成硅基光子学的图论光量子计算芯片》

  • 来源专题:集成电路
  • 编译者: 李衍
  • 发布时间:2023-04-19
  • 北京大学与中国科学院微电子研究所、浙江大学、丹麦科技大学等研究团队合作,克服了大规模光量子芯片设计、加工、调控和测量的诸多难题,制造出一款集成约2500个元器件的基于超大规模集成硅基光子学的图论光量子芯片,实现了面向通用型量子计算的多光子高维量子纠缠制备,以及编程玻色取样专用型量子计算。

    该团队设计的图论光量子芯片实现了量子芯片与复数图的完全一一对应,图的边对应关联光子对源,图的顶点对应光子源到探测器的路径,芯片输出的光子符合计数对应于图的完美匹配数。边的振幅、相位均通过片上器件任意设置、顶点间的边连接方式通过线性可重构网络进行编程设置。通过多路径/多过程量子信息抹除的方式,实现了图论光量子芯片的全局量子相干性。通过编程该图论光量子芯片可任意重构八顶点无向复图,并执行与图对应的量子信息处理和量子计算任务。

    团队发展出了基于互补金属氧化物半导体工艺(CMOS)的晶圆级大规模集成硅基光量子芯片制备技术和量子调控方法,通过优化设计光量子基本元器件(包括分束器、波导交叉器、干涉仪、光纤和芯片耦合器等)、优化波导器件加工工艺和芯片封装工艺,实现了低损耗的大规模集成硅基光量子芯片,并实现200通道以上相位精确操控及其量子态精确调控。该芯片单片集成了约2500个元器件,包括32个四波混频参量量子光源,以及200通道可编程移相器等器件,为目前国际上最大规模集成的光量子芯片。

    该研究成果以题名“Very-large-scale integrated quantum graph photonics”发表在《Nature Photonics 》期刊上,原文链接为:https://www.nature.com/articles/s41566-023-01187-z

  • 原文来源:https://new.qq.com/rain/a/20230408A0738L00;https://www.nature.com/articles/s41566-023-01187-z
相关报告
  • 《山西大学和北京大学合作实现了基于集成光量子芯片的连续变量纠缠簇态的确定性制备、调控和实验验证》

    • 来源专题:集成电路与量子信息
    • 发布时间:2025-02-25
    • 簇态作为一种特殊的量子纠缠态,能够在多个量子比特之间建立复杂的量子纠缠,是实现高效量子计算和量子网络的关键。集成光量子芯片作为一种新兴技术,能够在微纳米尺度上编码、处理、传输和存储光量子信息,然而,传统的量子光子芯片在制备大规模纠缠簇态时面临着巨大挑战,随着比特数的增加,量子纠缠的制备成功率呈指数下降,严重限制了其应用的扩展。与离散变量光量子芯片不同,连续变量光量子芯片因其确定性产生的特点能够更高效地实现大规模量子纠缠的制备和操控,是量子信息领域的重要发展方向。 据山西大学物理电子工程学院官网2月20日报道,山西大学光电研究所、光量子技术与器件全国重点实验室苏晓龙教授课题组,联合北京大学物理学院现代光学研究所王剑威教授与龚旗煌教授课题组,成功实现了基于集成光量子芯片的连续变量纠缠簇态的确定性制备、调控和实验验证。该研究成功解决了集成光量子芯片制备簇态的基础物理问题,填补了连续变量光量子芯片领域的空白,不仅推动了光量子芯片在量子信息领域的应用发展,开辟了大规模量子纠缠制备和操控的新技术路径,也为量子计算、量子网络和量子模拟等前沿科技的实用化提供了坚实的技术基础。 该研究成果于2月19日发表于国际顶尖学术期刊《自然》(Nature)上。
  • 《北京大学与山西大学研究团队合作,在连续变量光量子芯片领域取得重大突破》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-02-23
    • 2025年2月20日,北京大学物理学院现代光学研究所王剑威教授和龚旗煌教授课题组与山西大学苏晓龙教授课题组合作,在国际顶级学术期刊《自然》(Nature)上发表一项以“基于集成光量子频率梳芯片的连续变量多体量子纠缠”(Continuous-variable multipartite entanglement in an integrated microcomb)为题的突破性研究成果。该团队在国际上首次实现了基于集成光量子芯片的连续变量簇态量子纠缠,为光量子芯片的大规模扩展及其在量子计算、量子网络和量子信息等领域的应用奠定了重要基础。研究团队通过创新性地发展超低损耗的连续变量光量子芯片调控技术和多色相干泵浦与探测技术,成功在氮化硅集成频率梳微环腔的真空压缩频率超模上确定性地制备出多比特纠缠簇态,并实现不同簇态纠缠结构的可重构调控。同时,团队利用van Loock-Furusawa判据实验违背和完备的nullifier(零化子)关联矩阵测量,对连续变量簇态的纠缠结构进行了严格实验判定。这一研究成果不仅解决了以往集成光量子芯片面临的扩展性难题,还为未来实现更大尺度的量子纠缠与量子调控提供了新的技术路径。该成果标志着集成光量子芯片技术在量子信息处理领域的重要突破,为量子计算和量子网络的实用化发展提供了关键技术支撑。 量子信息的基本单元是量子比特(qubit)或量子模式(qumode),二者可统称为量子比特。它们可分别通过离散变量和连续变量编码在光量子体系中实现,各具优缺点。例如,基于单光子的离散变量体系能够实现超高保真度的量子比特操作,但其面临的主要挑战是制备量子比特和量子纠缠存在概率性。根据现有技术手段,离散变量量子纠缠的制备成功率随比特数增加呈指数下降,这限制了其可扩展性。相比之下,基于光场正交分量编码的连续变量体系能够确定性产生量子比特和量子纠缠,尽管其操控保真度略低,却为大尺度光量子纠缠态的制备提供了一条极具前景的技术路径。 集成光量子芯片是一种能够在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。自2008年国际上实现首个离散变量集成光量子芯片以来,集成光子芯片材料和技术取得了显著进展,并在离散变量光量子信息领域发挥了重要作用。然而,连续变量集成光量子芯片的发展面临诸多挑战:一方面,集成光学参量放大过程要求芯片具备高光学非线性和低光学损耗等高性能;另一方面,对片上多模压缩光场与纠缠的机理理解不足,多模纠缠调控与验证也存在技术瓶颈。这些因素导致连续变量光量子芯片的研究长期处于起步阶段,其编码与纠缠的比特数仅限于单模或双模压缩态,而多模(多比特)量子纠缠态的片上制备与验证仍极具挑战性。 纠缠簇态作为一种典型的多比特量子纠缠态,在量子信息科学中具有极其重要的地位。簇态不仅是单向量子计算的核心资源,还在量子纠错和容错量子计算中发挥关键作用,同时为量子网络的构建提供了重要支持,并可用于模拟复杂的多体量子系统。尽管簇态纠缠的重要性已被广泛认可,但其大规模制备技术仍面临诸多挑战。此前,光量子芯片上的簇态纠缠研究主要集中在离散变量体系,确定性地制备大规模纠缠簇态面临巨大实验困难,而连续变量簇态的片上制备和验证技术在国际上仍属空白。 在本研究中,研究团队首次在国际上实现了基于集成光量子芯片的连续变量纠缠簇态的确定性制备、可重构调控与严格实验验证。这一突破性成果不仅填补了连续变量光量子芯片领域的关键技术空白,还为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有非常重要的意义。 值得一提的是,当前纠缠模式数目的限制主要来自集成微腔的尺度(即频率间隔)和多色泵浦光的数目。团队已成功解决了基础的科学问题,为未来实现更大规模簇态纠缠及其在量子信息处理中的应用奠定了重要的物理基础。面向大规模扩展主要依赖于工程技术的优化,例如,通过先进芯片加工技术制备更大尺度的微腔,以及利用相位锁定的光学频率梳进行激发等工程手段,可以显著提升纠缠态的规模和复杂度。 论文原文链接:https://www.nature.com/articles/s41586-025-08602-1