《苏州纳米所在硅衬底InGaN基半导体激光器方面取得重要进展》

  • 来源专题:集成电路
  • 编译者: tengfei
  • 发布时间:2016-09-01
  • 硅是半导体行业最常见的材料,基于硅材料的电子芯片被广泛应用于日常生活的各种设备中,从智能手机、电脑到汽车、飞机、卫星等。随着技术的发展,研究者发现通过传统的电气互联来进行芯片与系统之间的通信已经难以满足电子器件之间更快的通信速度以及更复杂系统的要求。为解决这一问题,“光”被认为是一种非常有潜力的超高速传输媒介,可用于硅基芯片以及系统间的数据通信。但是,硅作为间接带隙材料,发光效率极低,难以直接作为发光材料。研究人员提出利用具有高发光效率的III-V族材料作为发光材料,生长或者键合在硅衬底上,从而实现硅基光电集成。III族氮化物材料是一种直接带隙材料,具有禁带宽度宽、化学稳定性强、击穿电场高以及热导率高等优点,在高效发光器件以及功率电子器件等领域有着广泛的应用前景,近年来已成为一大研究热点。将InGaN基激光器直接生长在硅衬底材料上,为GaN基光电子器件与硅基光电子器件的有机集成提供了可能。另一方面,自1996年问世以来,InGaN基激光器在二十多年里得到了快速的发展,其应用范围遍及信息存储、照明、激光显示、可见光通信、海底通信以及生物医疗等领域。目前几乎所有的InGaN基激光器均是利用昂贵的自支撑GaN衬底进行制备,限制了其应用范围。硅衬底具有成本低、热导率高以及晶圆尺寸大等优点,如果能够在硅衬底上制备InGaN基激光器,将有效降低其生产成本,从而进一步推广其应用。 由于GaN材料与硅衬底之间存在着巨大的晶格常数失配和热膨胀系数失配,直接在硅衬底上生长GaN材料会导致GaN薄膜位错密度高并且容易产生裂纹,因此硅衬底InGaN基激光器难以制备。该研究方向是目前国际上的研究热点,但是到目前为止,仅有文章报道了在光泵浦条件下硅衬底上InGaN基多量子阱发光结构的激射。

    针对这一关键科学技术问题,中国科学院苏州纳米所杨辉研究员领导的III族氮化物半导体材料与器件研究团队,采用AlN/AlGaN缓冲层结构,有效降低位错密度的同时,成功抑制了因硅与GaN材料之间热膨胀系数失配而常常引起的裂纹,在硅衬底上成功生长了厚度达到6 μm左右的InGaN基激光器结构,位错密度小于6×108 cm-2,并通过器件工艺,成功实现了世界上首个室温连续电注入条件下激射的硅衬底InGaN基激光器,激射波长为413 nm,阈值电流密度为4.7 kA/cm2。

相关报告
  • 《具有n型脊的硅衬底InGaN激光器》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2020-10-19
    • 中国苏州纳米技术与纳米仿生研究所(SINANO)已在硅上使用n型脊形波导(nRW)制造了氮化铟镓(InGaN)发射紫光的激光二极管(LDs),与pRW LDs相比,其电阻更低,热性能更好。普通工艺要求基于InGaN的激光二极管中的RW位于器件的p侧,但p-GaN的电阻比n-GaN的电阻大得多,因此出现了热和电问题。 该团队认为nRW-LD器件可以与大规模的硅基互补金属氧化物半导体(CMOS)主流电子产品完全兼容,并且可以在单片集成硅光子学中用作高效的片上光源,以实现高功率加快数据通信和计算速度。 RW-LD的III-氮化物异质结构在硅上生长,并控制穿线错位密度。激光二极管结构由夹在波导层之间的五个InGaN量子阱组成。将激光二极管结构的p面朝下键合到具有p型欧姆接触电极表面的精确Si(100)晶片上。倒置的RW-LD结构使包层的n型侧面约为0.5μm。在非倒置结构中,n覆层位于厚GaN模板的顶部,倒置RW-LD覆层的p侧较厚,为1.2μm。最终将键合材料制成10μmx800μmRW-LD器件。 研究人员表示低热导率的n型AlGaN包层厚度减小可以降低由于AlGaN和GaN模板之间晶格失配而产生的热阻和拉应力,从而提高器件性能和制造成品率。 在-5V反向偏置下,反向泄漏电流为?10-7A。开启电压约为3.0V。反向nRW-LD注入350mA时的差分电阻为1.2Ω,反向器件的热阻估计为18.2K / W。在350mA下连续波(CW)操作下的结温为48.5°C。 在100mA注入时,nRW-LD结构的半峰全宽(FWHM)光谱线为12nm。在320mA时,线宽缩小到0.8nm,在阈值处给出的激光模式波长为418.3nm。
  • 《长春光机所在量子精密测量用窄线宽半导体激光器方面取得新进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-01-24
    • 量子精密测量是利用光与原子相互作用的量子效应和技术,突破标准量子极限,以实现测量精度、灵敏度和稳定性全面超越经典测量手段的方法。这一颠覆性技术的关键是实现原子精细能级跃迁和量子态探测的窄线宽激光器。此外,激光器的高偏振特性也是提升激光稳频系统和量子干涉系统性能,制约测量准确度和分辨率的决定因素。因此,兼具窄线宽和线偏振的窄线宽半导体激光器在量子精密测量领域备受关注,其中,用于Cs原子里德堡态制备的852nm窄线宽激光器是典型代表。 中国科学院长春光学精密机械与物理研究所大功率半导体激光器研究团队在王立军院士、宁永强研究员的领导下,近年来开展了先进窄线宽半导体激光器及关键技术攻关。近日,该团队陈超副研究员报道了一种基于外部光反馈结构的852nm窄线宽、线偏振半导体激光器。激光器结构通过引入飞秒激光诱导的双折射Bragg光栅滤波器,并与高偏振相关性半导体增益芯片混合集成,利用偏振模式选择性反馈和注入锁定技术,实现了超过30dB偏振消光比和低至2.58kHz的高线偏振、窄线宽激光输出。该激光器可作为量子精密测量系统的潜在原子泵浦光源,并且基于前期在抗辐射、窄线宽激光器方面的研究基础,亦有希望用于空间环境中星载和箭载的冷原子量子实验系统。 这项研究成果以“Linear polarization and narrow-linewidth external-cavity semiconductor laser based on birefringent Bragg grating optical feedback”为题,发表在Optics and Laser Technology(DOI:https://doi.org/10.1016/j.optlastec.2023.110211)。 此前,研究团队针对空间激光通信和相干激光探测的需求,分别报道了抗辐射窄线宽外腔半导体激光器(成果发表在Journal of Luminescence,DOI:doi.org/10.1016/j.jlumin.2023.119812)和高偏振消光比窄线宽混合集成激光器(成果发表在Optics Express,DOI:doi.org/10.1364/OE.431341)。 上述论文的第一作者分别为博士研究生陈加齐、罗曦晨,通信作者为陈超副研究员。研究工作得到了国家自然科学基金委项目、吉林省科技发展计划资助项目和长春市科技发展计划项目的资助,取得的窄线宽半导体激光器关键技术突破已经授权国家发明专利3件。