近日,美国国家标准与技术研究院(NIST)的研究人员Sam Schaffter破解了一个测量难题,这将有助于创新药物的开发。
Sam Schaffter说:“我的祖父是一名木匠,所以在我成长的过程中,我经常听到一句格言,一定要在切割前测量两次,才能保证切割的准确性。”
这句谚语也常被裁缝引用——在裁剪布料之前,你必须确保测量准确无误。
我未曾想到,多年后,当我研究一种不同类型的“剪刀”时,这句话会有了新的含义,这种“剪刀”是由影响我们基因工作的遗传物质核糖核酸(RNA)构成的。
RNA有时被称为“信使”,因为它可以在我们DNA发挥作用的过程中起到协助加工的作用,并负责将遗传信息转化为蛋白质,执行具体的生命活动。我的部分研究涉及研究一种将RNA切成两部分的剪刀。这些RNA剪刀称为自裂解核酶。
这些RNA“剪刀”在基因表达中起着至关重要的作用,涵盖了生命的各个领域——从简单的病毒到人脑中的复杂基因——并且对于理解及治疗感染和疾病具有广泛的意义。
自裂解核酶天然存在于病毒和许多生命形式中。但研究人员发现,我们可以重新利用它们来帮助设计新的RNA疫苗、丰富药物治疗手段,甚至是帮助合成您可能经常服用的补充剂,例如益生菌。这被称为细胞工程,也就是我目前在NIST所从事的主要工作。自裂解核酶对于生成我用来编程细胞的RNA元件来说是必不可少的。
研究人员必须确保核酶根据其预期的用途来发挥作用。当我们将自裂解核酶应用到它们尚未进化出对应功能的领域时,需要应对的问题可能会很棘手。例如生物工程,改造细菌以生产生物燃料或改变基因表达以治疗癌症,在这些应用场景下,我们需要对核酶进行准确的测量,才能在研究中取得进展。
回到木工行业的类比,我们可以把核酶的不同应用场景想象成一张桌子的不同桌腿。如果我们不能准确测量每条桌腿,那么最终造出来的只能是一张摇摇晃晃的桌子。同样的,如果我们想把在细菌中发现的核酶序列作为人类RNA疗法的一部分,我们就需要能够准确测量核酶在新的治疗环境中实际的“切割”效果。
木匠和裁缝使用标准化的长度测量方法,并建立了校准工具精度的方法以确保生产过程的准确性。但是在分子水平上校准测量结果就没有这么简单了,尤其是当我们试图研究这些分子在活细胞内的行为方式时,就像我所研究的细菌一样。
直接测量细胞内核酶的“切割”效果是很有挑战性的,所以研究人员常常把RNA从细胞中提取出来,然后用这些提取出来的RNA来进行测量。但这些额外的操作有可能会影响最终测量的结果。
大多数核酶是在细胞内产生的,但有些是在细胞外产生的。如果这些核酶是在细胞外产生的,我们就称之为“体外”(in vitro)。
因此,在我的实验室中,在尝试从细胞中提取RNA来进行测量之前,我们首先测试了体外核糖酶在提取所需的全部样本操作过程中会发生怎样的变化。为此,我们选择了其他由美国国家标准与技术研究院(NIST)主导的研究中已知的、在体外几乎无法切割的核酶。我们模拟了这些核酶通过我们用于测量准备的所有样本操作过程。
然后我们重新进行了测量。结果发现,在模拟从细胞中提取RNA样本制备后的测量数据表明,“切割”量比我们在制备前测量的结果要多得多。
因此,样本制备过程会影响测量的稳定性,使得测量结果不准确。
这是一个问题,比如说,医学研究人员可能认为他们的测量结果恰到好处,但随后却不知道为什么治疗结果没有达到预期的效果。他们不准确的测量结果表明核酶“切割”的很好,所以他们可能会在药物开发过程中试图解决已知的错误。我们的团队希望解决这一测量难题,这样研究人员就不会浪费时间和精力去排查错误出现的原因。
进一步探究这个问题,我们可以把在特定情境下不切割的核酶想象成被绳子绑住刀刃的剪刀。从细胞中制备RNA的过程导致绳子松动,从而导致剪刀在测量发生之前就把绳子剪断了。我们不希望这种情况发生,因为它对我们的研究产生了负面影响。
为了解决这个问题,我们在“剪刀”周围放置了一个非常坚固的DNA链形式的“结”,这样它们就无法在样本制备过程中被切割了。只有使用这种修改后的方案,我们才能在制备样本之前和之后获得相同的测量结果,无论是细胞内的核酶还是体外的核酶。
测量难题终于解决了!我们已经发表了这项研究,以便该领域的其他人可以将该方案应用于他们自己的测量工作,从而推进医学和细胞工程领域的重要应用。这些结果凸显了对同一样本进行多次测量的重要性。
我祖父是对的,如果你想获得正确的切割效果,最好总是至少测量两次!
详细研究核酶对我来说是一项副业;我的主要研究方向是重新利用生物分子,如DNA和RNA,作为编程生物学的软件,这被称为分子编程。自裂解核酶对于产生我用来编程细胞的RNA元件是必不可少的。准备这些元件类似于制作纸雪花,其中纸在“切割”之前必须以某种特定的方式折叠。我设计的RNA必须在核酶“切割”之前折叠成特定的结构才能正常发挥作用。
在为细胞外使用设计这些RNA时,我发现许多情况下核酶无法切割,导致我设计的方案失效。我意识到核酶活性的测量对于成功将我的设计转移到细胞中至关重要,因此我开始探索进行这些测量的新方法。
我在美国国家标准与技术研究院(NIST)接受的培训教导我,要根据已知的参考样本和技术来校准任何新的测量样本——始终使用至少两种不同的测量方法来测量已知样本!这就是这个副业项目的诞生方式。
我们准确的核酶测量技术现在是我设计周期中不可或缺的一部分,并将帮助美国国家标准与技术研究院(NIST)的研究人员改造细胞,以解决各种各样的问题,从改造细菌以诊断和治疗肠道或皮肤疾病,到改造酵母以生产药品或生物燃料。
除了NIST之外,这些测量将支持不断增长的生物经济规模的进一步发展,作为一名始终记得要测量两次的计量科研人员,这对我来说是非常有意义的。
该项目的研究成果已发表在《RNA》期刊上。(DOI:10.1261/rna.080243.124)