《多孔生物质炭材料,打造更高性能的超级电容器》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-23
  • 拥有来自植物的层状多孔结构电极材料的超级电容。此图片曾作为可持续能源燃料学术杂志封面上(图片来源:Dina Ibrahim Abouelamaiem 、Dina Mohammadieh)

    这项研究工作的主要负责人Dina Ibrahim Abouelamaiem表示:“ 这项工作最关键的结果是超级电容器中材料的形式和功能之间的相关性。 ” 她接着阐述道:“我们的研究是基于对更加绿色的未来和改进的能源系统的需求而开展的,” 这就是为什么他们的论文(发表在Sustainable Energy Fuels 杂志) 重点是阐述3D结构如何影响生物碳材料(基于植物纤维素的)的超级电容器的性能。 这些材料可作为性能优异的超级电容器中的贵金属和有毒化学品的环保替代品。

    助力未来

    超级电容器是一种极具应用潜力的器件,正如它的名字一样,它们在充放电的时候可以保持高功率密度和超长的使用寿命。 由于这些特性,超级电容器能够填补电池和燃料电池之间设备性能的差距。 深入理解多个尺度上的纳米结构对于优化材料性能和设计更好的器件至关重要。Ibrahim及其同事通过融合大量的补充技术,详细阐明了结构和性能之间复杂的协同作用,并表明了层次多孔状网络电极材料才能最有效地发挥作用。

    他们的研究,通过使用氢氧化钾活化的生物碳电极作为模型系统,并且还将这些发现与商业材料进行了对比,以证明生物碳电极更广泛的适用性。 为了形成材料的完整图像,研究人员利用一系列表征方法,如SEM(扫描电子显微镜),BET(用于氮吸附的Brunauer-Emmett-Teller理论),XPS(X射线光电子能谱)和X-ray CT(X射线计算机断层扫描)。 这一系列表征技术涵盖了广泛的空间尺度,这意味着研究人员能够完全分析纳米、微米、中孔和大孔尺寸材料的结构特征。

    根据Ibrahim的说法,位于伦敦大学学院化学工程系的电化学创新实验室(EIL)为这些测试提供的大量技术支持,可以让研究人员进一步理解和阐述超级电容器设备结构与功能的关系。

    需要孔径混合物来优化超级电容器的生物碳材料(图片来源:Dina Ibrahim Abouelamaeim)

    超级电容器的孔隙

    结果表明, 不同孔隙大小的生物炭混合在一起形成了一个层次结构,这种结构可以有效提升材料性能。 测量结果显示高比表面积和低电池电阻之间存在着直接关系,这导致了高比电容。该团队使用各种电化学装置,同时延长操作周期来测试超级电容器的性能,以证明材料的循环性和 稳定性。 这些发现可以为不久的将来开发更高效、性能更高的储能设备提供理论基础。

    文章来自nanotechweb网站,原文题目为Supercapacitor nano-architecture: Designing a plant-powered future。

相关报告
  • 《超级电容器多孔炭首个国际标准发布》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-07-26
    • 记者近日从中国科学院山西煤炭化学研究所获悉,日前由该所主持,宁波中车新能源科技有限公司、深圳市标准技术研究院及国家纳米科学中心共同参与制定的国际标准——电化学电容器多孔炭(简称电容炭)空白详细规范,经国际电工委员会纳米电工产品与系统技术委员会通过,正式对外发布。该标准由中国科学院山西煤炭化学研究所709组技术团队承担制定工作。该标准的制定,一方面能全方位梳理总结材料影响器件性能的潜在因素,从内部把技术做精做细,另一方面也能促进国内研发人员与技术水平先进的国际公司充分交流,帮助技术升级,从而助力国产电容炭走向国际市场。 这一电容炭领域首个国际材料空白详细规范,全面梳理了材料对器件性能的影响因素,包括电容炭的化学、物理、结构及电化学关键控制特性23项,其中电化学关键控制特性除了比容量、倍率性能等一些短期性能指标,还包括了下游用户更加关心的长期稳定性、温度耐受性等指标。标准对这23项关键控制特性的测试方法进行了详细的阐述,并且通过查阅国际国内标准,对这些测试方法的标准化成熟度进行了归类。 电化学电容器以其超快的充放电能力、长循环寿命、宽工作温度范围、高安全可靠性和低维护成本,被广泛用于电力监测通信终端、电网调频和规模储能等领域,拥有广阔的市场前景。然而,我国电化学电容器的关键活性材料——电容炭,长期依赖日韩进口。近年来,我国电容炭生产技术取得重要突破。此次标准发布对于国内电化学电容器的国产化进程起到了关键作用。
  • 《美国用新材料制更坚固的超级电容器电极》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-07-16
    • 超级电容器作为一种储能设备,受到很大的欢迎。   移动电子设备、电动汽车、无人机和其他技术的爆炸式增长,推动了人们对需要能够为此类设备提供动力的新型轻量化材料的需求。据外媒报道,美国休斯顿大学(the University of Houston)和德州农工大学(Texas A&M University)的研究人员利用由还原氧化石墨烯和芳纶纳米纤维制成了结构型超级电容器电极,而且此种电极比传统的碳基电极更坚固、更灵活。   休斯顿大学研究团队还证明,与传统的建模方法(即多孔介质模型)相比,基于该材料纳米结构建模可以更准确地了解该复合电极中离子扩散情况及其相关特性。   研究人员表示,更精确的建模法可以帮助研究人员找到更高效的新型纳米结构材料,且此种材料能在重量更轻的情况下,实现更长的电池寿命,提供更高的能量。   研究人员知道,接受测试的材料,即还原氧化石墨烯和芳纶纳米纤维(或rGO/ANF)是一种很好的候选材料,因为其具备很强的电化学和机械性能。超级电容器电极通常由多孔碳基材料制成,可实现高效的电极性能。而还原氧化石墨烯主要就由碳制成,芳纶纳米纤维则提供了机械强度,增加了该电极的多功能性,让其可用于军事等多种应用。该研究也正好由美国空军科学研究办公室资助。   目前的论文反映了研究人员对改进建模,以发明新能源材料感兴趣。研究人员表示:“我们想要的传达的是,传统模型,即基于多孔介质的模型,在设计此类新型纳米结构材料以及探究此类材料用于电极或其他储能设备时,可能还不够精确。原因在于多孔介质模型一般假设材料内部的孔隙大小均匀,而不是测量该材料的不同尺寸和几何特性。”