《Science丨揭示真核生物焦亡蛋白GSDM非酶切依赖的全新激活机制》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-04-29
  • 2024年4月25日,中国科学院生物物理研究所丁璟珒课题组和北京生命科学研究所邵峰团队合作,在 Science 期刊发表了题为Cleavage-independent activation of ancient eukaryotic gasdermins and structural mechanisms 的研究论文,该研究揭示了两种来源于低等真核生物的GSDM蛋白通过非蛋白酶切割的新颖方式激活的分子机制。

    研究人员首先通过序列同源性分析发现,最原始的多细胞生物丝盘虫(Trichoplax adhaerens)的基因组编码了一个只含有膜打孔结构域的GSDM同源蛋白(TrichoGSDM)。通过重组表达和纯化鉴定,发现TrichoGSDM蛋白同时存在单体和二聚体两种形式,其中单体蛋白具有在脂质体上打孔的活性,TrichoGSDM二聚体则不能上膜打孔。研究人员进一步解析了TrichoGSDM二聚体高分辨率的晶体结构,意外地发现TrichoGSDM二聚体是由两个单体蛋白通过三对分子间二硫键交联而成。在体外利用还原剂处理TrichoGSDM二聚体,或者突变参与二硫键形成的Cys都可以获得均一的单体蛋白,并展示出强烈的膜打孔活性,这表明二硫键连接的二聚体代表了TrichoGSDM蛋白的非激活状态,二聚体向还原态的单体转换可能是TrichoGSDM蛋白潜在的激活机制。细胞质中的谷胱甘肽(glutathione,GSH)和硫氧还蛋白(thioredoxin,TRX)是两种重要的抗氧化系统,可以清除胞质中有害的活性氧或者蛋白质错误氧化形成的二硫键,维持胞质的还原环境。

    研究人员利用胞质生理浓度的GSH或丝盘虫的TRX蛋白处理TrichoGSDM二聚体,都可以将二聚体还原、释放单体的膜打孔活性,在细菌中诱导表达TrichoGSDM具有和哺乳动物GSDM蛋白N端结构域相似的抑菌活性,说明细菌胞质的还原环境有利于TrichoGSDM维持在活化的单体状态,通过在细菌膜上打孔抑制细菌生长。研究人员还成功解析了TrichoGSDM在脂质体膜上形成的分子孔道高分辨率的冷冻电镜结构,发现TrichoGSDM由44个单体形成了目前已知的真核生物最大的GSDM孔道。通过结构分析揭示了TrichoGSDM识别酸性磷脂、发生构象变化并寡聚组装成孔的结构基础。这些研究阐明了TrichoGSDM从分子间二硫键介导的二聚体自抑制状态,通过还原二硫键活化成具有打孔活性的单体状态,并进一步在膜上寡聚打孔介导细胞死亡的分子机制,这种新颖的激活机制在GSDM蛋白中是首次发现的。

    TrichoGSDM的发现激发了研究人员继续探寻只含有膜打孔结构域的GSDM蛋白的研究兴趣。最近,在丝状真菌粗糙脉孢菌(Neurospora crassa)中发现的融合致死基因rcd-1,在不同菌株中的等位基因可编码RCD-1-1和RCD-1-2两种同源蛋白,当不同菌株发生细胞融合时,两种RCD-1蛋白介导了同种异体识别(allorecognition)引发的细胞死亡。研究人员通过解析RCD-1-1和RCD-1-2的晶体结构,发现两种RCD-1蛋白与哺乳动物GSDM的膜打孔结构域具有相似的结构特征,但二者缺少发挥自抑制功能的结构元件。单独的RCD-1-1或RCD-1-2在溶液中呈现单体状态,通过识别酸性磷脂结合在脂质体膜上,却无法寡聚打孔,因而没有细胞毒性。而两种RCD-1蛋白在大肠杆菌、酿酒酵母或HeLa细胞等多种细胞系统中共表达时,会引发强烈的裂解性细胞死亡。

    通过解析共孵育的RCD-1-1和RCD-1-2蛋白在脂质体膜上形成的分子孔道冷冻电镜三维结构,发现两种蛋白通过交替排布的异源寡聚组装方式形成已知的最小GSDM孔道。分析RCD-1分子孔道中两种蛋白的作用方式发现,每一个RCD-1-1分子都与两侧相邻的RCD-1-2分子相互作用,但两侧的互作方式并不等效,拥有更强分子间极性作用的一侧主导了RCD-1异源二聚体的形成,而另一侧的分子间相互作用驱动了以异源二聚体为单元进一步寡聚成孔。将RCD-1-1和RCD-1-2蛋白与脂质体共孵育,或分别结合脂质体后再进行共孵育,都可以通过两种蛋白的分子间识别激活在脂质体膜上的打孔活性,而将异源二聚体识别界面的关键残基突变,在分别表达两种蛋白的不同交配型酵母细胞融合或不同粗糙脉孢菌菌株的孢子融合时,都阻断了RCD-1蛋白的分子间识别,因而不能激活膜打孔活性并引起裂解性细胞死亡。这些研究揭示了具有膜结合特性的RCD-1蛋白单独存在时处在未激活的静息状态,细胞融合导致两种蛋白相遇,通过分子间特异性识别来激活异源二聚体组装,并进一步在细胞膜上寡聚成孔,执行细胞死亡的功能。

    上述研究打破了一直以来认为GSDM蛋白需要蛋白酶切割打开自抑制、激活膜打孔活性的传统认识,揭示了低等真核生物中两类只含有膜打孔结构域的GSDM蛋白,分别通过氧化还原调控或配对的分子间相互作用来释放膜打孔活性的全新激活机制,拓展了对GSDM蛋白进化和功能多样性的机制理解。多种不同的激活机制表明GSDM蛋白可以响应更广泛的生物学信号,参与更丰富的生命活动过程。同时,这种不依赖酶切的GSDM蛋白具有被开发成诱导细胞死亡新型工具的潜力,可以助力细胞焦亡相关的基础和转化研究。

相关报告
  • 《研究揭示金属离子激活寨卡病毒解旋酶分子机制》

    • 来源专题:新发突发疾病(新型冠状病毒肺炎)
    • 编译者:张玢
    • 发布时间:2018-03-14
    • 中国科学技术大学金腾川团队利用X晶体衍射技术,首次清晰地捕捉到寨卡病毒解旋酶只结合三磷酸核苷(NTP)、与NTP-金属离子结合后的激活初始态及NTP水解后的状态,从而成功揭示了金属离子激活寨卡病毒NS3解旋酶的分子机制。相关成果日前在线发表于《核酸研究》 杂志。 NS3是寨卡病毒基因组编码的7个非结构蛋白之一。此项研究很好地解释了国外专家在其他病毒研究中发现的奇特现象:如果没有二价金属离子的参与,NTP不仅不能推动病毒解旋酶的工作,反而抑制了其活性。 该项研究还首次为金属离子结合NTP后引起NS3解旋酶自身结构发生改变,从而激活其活性的过程提供了结构证据。与此同时,研究解析的晶体结构是同类型NS3解旋酶中分辨率最高的,因此为治疗寨卡病毒感染的药物设计提供了精细的结构信息。 此外,该研究工作揭示的机制不只局限于寨卡病毒解旋酶,还适用于其他黄热病毒家族的解旋酶。据研究人员介绍,包括该研究在内的国内外各项对寨卡病毒基础生物学的研究,大大促进了人类对这一突发重要病源微生物的认识。(来源:中国科学报 曾皓).
  • 《科学家揭示外源核酸诱导的原核生物短Ago蛋白系统发挥功能的分子机理》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2023-11-10
    •     RNA介导的转录后基因调控在生命个体抵御外源入侵的过程中起到重要作用。Argonaute(Ago)蛋白是存在于古菌、细菌和真核生物中的一种蛋白。它为非编码小RNA提供锚位点,达到降解靶基因或者抑制翻译的目的。对比真核生物的Ago,原核生物的Ago展现出多样性,分为三个家族——长A型、长B型和短Ago亚型。原核长A和长B型Ago包括四个结构域,即N端结构域、PAZ结构域、MID结构域和PIWI结构域。这四个结构域在Ago蛋白系统发挥功能的过程中发挥重要的功能,缺一不可。原核短Ago不具备N端和PAZ结构域(图1a),因此原核短Ago在发挥功能时必须招募一些其他蛋白如SIR2和TIR蛋白,补偿N端和PAZ结构域的功能。     与真核生物相比,原核生物的Ago不仅可以介导由DNA引导的靶向DNA干扰,而且可以介导由RNA引导的靶向RNA或者DNA干扰。因此,原核生物的Ago展示出更多的功能,如靶向干扰噬菌体入侵和外源质粒DNA扩增、阻碍外源基因组的复制和增强基因的同源重组等。NAD+(烟酰胺腺嘌呤二核苷酸)是细胞生命活动周期中的重要代谢产物,NAD+的耗尽会直接导致真核或者原核生命个体的死亡。原核短Ago作为原核细菌的免疫系统关键蛋白,在识别入侵核酸后会激活NAD+酶的活性,耗尽个体的NAD+,诱导细胞的死亡,从而阻碍外源入侵基因组的复制和扩增,而这背后的结构机理仍然未知。     10月2日,中国科学院物理研究所/北京凝聚态物理国家研究中心丁玮团队和朱洪涛团队,与中国医学科学院和北京协和医学院病原生物研究所崔胜团队合作,在《自然》(Nature)上,发表了题为Nucleic Acid-triggered NADase activation of a short prokaryotic Argonaute的研究论文。该研究通过高分辨冷冻电镜技术与自主研发的自动化结构解析策略,在数百万计的冷冻电镜蛋白质颗粒中,高效地筛选并重构了与五个与原核短Ago系统相关的高分辨率三维结构——自抑制的功能单元单体、载有引导RNA/靶向DNA的功能单元单体、两个不同构象的功能单元的二聚体和功能单元的四聚体(图1b-c)。     研究以此结构为基础结合体外功能实验发现,在存在外源DNA的情况下,原核短Ago系统功能单元单体会从入侵基因的转录组中获得引导RNA片段。该引导RNA片段会与原核短Ago系统结合,并进一步通过碱基配对识别与引导RNA序列互补的目标DNA(图1b-c)。在此过程中,引导RNA可能从它在MID结构域中的结合位点上解离,以便引导RNA与靶向DNA的杂交双链的形成。杂交双链的形成会导致原核短Ago系统的构象发生变化,并通过MID结构域形成二聚体(图1c)。而在形成二聚体的过程中,一个功能单元的TIR结构域会发生翻转,且与另一个功能单元的TIR相互作用,使得两个TIR结构域以头尾相接的形式组织在一起,并在作用界面上形成一个完整的NADase活性位点(图1d)。两个二聚体会进一步通过它们的TIR结构域形成一个四聚体(图1e)。四聚体形式的组装体会发挥NADase的作用,耗尽细胞内的NAD+,导致细胞本身的死亡,阻碍了外源基因的扩增。该研究为剖析原核短Ago系统如何发挥功能奠定了重要的结构基础,并揭示了原核短Ago中NADase的激活机制以及导致细菌死亡的分子机理。