《前沿 | 大连化学物理研究所制备出基于光子纤维素纳米晶的柔性汗液传感器》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-04-24
  • 近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队设计并制备了一种用于汗液中钙离子传感的可持续、不溶性和手性光子纤维素纳米晶体贴片。该研究为纤维素纳米晶(CNC)的功能化研究提供了一种新思路。

    在低碳循环经济的倡导下,CNC作为一种生物基材料被迅速地开发,在电子、生物塑料、能源等领域被广泛的应用,有望加速推进各领域的可持续发展。特别的是,CNC可以自发组织形成手性向列液晶结构,产生绚丽的光子结构色,这对可持续性光学和光学传感的发展非常重要。然而,此类材料在潮湿或液体环境中的功能失效,不可避免地损害了它们在生物医学、膜分离、环境监测和可穿戴设备中的发展。因此,通过简单有效的手段使得CNC在液体环境下稳定存在,并实现功能化的应用非常重要。

    本工作中,团队发展了一种制造不溶性CNC基水凝胶的简单且有效的方法,利用分子间氢键重构,热脱水使优化的CNC复合光子膜在水溶液中形成一个稳定的水凝胶网络。研究发现,该水凝胶在干湿状态之间可以可逆转换,便于进行特定的功能化处理。团队通过在液体环境下吸附溶胀引入功能化分子,得到了具有抗冻性(–20℃)、强粘附性、良好生物相容性、对Ca2+高灵敏度和高选择性感应的水凝胶。该工作有望促进利用可持续纤维素传感器监测其他代谢物(即葡萄糖、尿素和维生素等)的应用,并为在环境监测、膜分离和可穿戴设备中运行的数控水凝胶系统奠定了基础。

    卿光焱团队长期致力于CNC手性功能化相关研究,开展了一系列工作:通过整合CNC自组装工艺和DMF溶剂中的紫外光引发的有机聚合,实现高性能光子材料的合成,从而增强CNC基复合材料的弹性变形概念(Small,2022);将强手性的CNC系统与强发光的稀土配合物进行结合,制备出携带四种光学信息的手性光子复合膜(Adv. Funct. Mater,2022)等。

相关报告
  • 《探索 | 中国科学院近代物理所制备出可穿戴柔性多孔汗液传感器》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-07-17
    • 近日,中国科学院近代物理研究所材料研究中心报道了基于核径迹技术的可穿戴柔性多孔汗液传感器。近期,相关研究成果以Wearable and Flexible Nanoporous Surface-Enhanced Raman Scattering Substrates for Sweat Enrichment and Analysis为题,发表在《美国化学学会应用纳米材料》(ACS Applied Nano Materials)上。 监测人体物理和化学信号,对疾病预防特别是慢性疾病至关重要。然而,对人体进行高效、连续、实时和无创检测目前仍是挑战。汗液携带的物质与人体的生理状态密切相关,因此对这些生物标记物实现准确、实时检测和分析的重要途径是开发无创、可穿戴式汗液传感器。 科研人员借助兰州重离子研究装置(HIRFL),通过在离子径迹蚀刻聚碳酸酯(PC)膜上原位合成金纳米星(AuNSs),制备了一种可穿戴纳米多孔柔性SERS基底用于汗液富集和分析。由于基底具有纳米多孔结构,能够有效地快速收集分析物,在10-4到10-13M的分析物浓度范围内表现出良好的信号重现性和均匀性,并可从收集的汗液中给出乳酸和尿酸等物质信息的变化。 与其他柔性光学汗液传感器相比,该汗液传感器结合了灵活性、纳米多孔性和等离子体效应的特点,并具备长期稳定性和良好的机械性能,且可重复利用以降低使用成本。这一新型可穿戴基底将为汗液传感技术开辟新途径,有望在未来个人健康实时监测中发挥重要作用。研究工作得到国家自然科学基金的支持。 可穿戴汗液传感器示意图及人体真实汗液测试
  • 《前沿 | 大连化学物理研究所实现羟丙基纤维素的左手性圆偏振发光》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-02-02
    • 近日,大连化学物理研究所生物技术研究部生物分离与界面分子机制研究组(1824组)卿光焱研究员团队开发了强烈左手性圆偏振发光(L-CPL)的手性荧光复合膜,突破了长期以来纳米纤维素衍生化只有右手性圆偏振发光(R-CPL)的现状,为纳米纤维素手性圆偏振光的不对称性研究奠定了基础。 圆偏振发光与物质之间的相互作用为诸多新兴技术发展提供了机会,如量子计算与信息加密、3D裸眼显示、不对称催化、手性传感和手性生物分子成像等。如何同时获得大不对称因子(glum)和高量子产率(Φ)的圆偏振发光材料是实现这些应用的基础。具有液晶相的纤维素纳米晶体(CNC)与强荧光成分自组装研究为这个问题提供了解决方案。然而,传统的CNC体系仅产生R-CPL,无L-CPL,限制了手性功能化应用。 卿光焱团队长期致力于纳米纤维素的手性功能化研究,前期开发了多模式、可转换的手性光学防伪薄膜(Adv. Funct. Mater.,2022 )、光子纤维素纳米晶的柔性汗液传感器(Small,2023)。在此基础上,本工作中,团队提出了羟丙基纤维素结合聚集诱导发光体共组装构筑L-CPL的策略,获得了大glum(+0.51)和高Φ(55.8%)的手性荧光薄膜。此外,该薄膜还展现出柔韧性、耐溶剂性、结构色可调性和多色L-CPL等综合特性,可以作为耐用性和多模式的光学防伪标识,印刷在织物上,即使经过反复洗涤干燥,仍能保持光学稳定性;还可以作为手性光源,实现相反L-CPL/R-CPL诱导不对称光聚合反应。该工作有望推动纳米纤维素手性光学材料在圆偏振3D显示器、手性分子传感和CPL成像等方面的应用。 相关研究成果以“Intense Left-handed Circularly Polarized Luminescence in Chiral Nematic Hydroxypropyl Cellulose Composite Films”为题,于近日发表在《先进材料》(Advanced Materials)上。该工作的第一作者是我所1824组联合培养硕士研究生黄裕晓,上述工作得到国家重点研发、国家自然科学基金、辽宁省兴辽英才计划、我所创新基金等项目的支持。