《生物物理所等揭示细菌效应蛋白拮抗宿主细胞焦亡通路的分子机理》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-08
  • 细胞焦亡作为机体重要的天然免疫反应,在拮抗和清除病原菌感染中发挥关键作用。当革兰氏阴性菌侵入宿主细胞后,其外膜的重要病原分子模式LPS(脂多糖,也称内毒素)会被宿主细胞内的天然免疫受体caspase-4/5/11识别,LPS激活的caspase-4/5/11会进一步切割活化焦亡蛋白GSDMD释放其膜打孔活性,导致细胞焦亡,激发宿主的抗菌炎症反应。同时,细菌也采用了多种策略来逃避宿主的免疫防御,例如通过独特的III型分泌系统向宿主细胞“注入”专门的效应蛋白,干扰宿主的免疫防御通路。2021年,北京生命科学研究所邵峰团队发现痢疾杆菌(Shigella)分泌的效应蛋白OspC3可以特异识别宿主细胞内的天然免疫受体caspase-4/11,通过催化caspase酶活中心的关键精氨酸发生一种全新的ADP-riboxanation翻译后修饰使caspase-4/11失活,阻断其活化下游GSDMD介导的细胞焦亡免疫防御。然而效应蛋白OspC3是如何特异地识别宿主靶标caspase-4/11,又是如何催化新颖的ADP-riboxanation修饰拮抗细胞焦亡的精确分子机理等关键科学问题有待进一步回答。

      近日,中国科学院生物物理研究所王大成/丁璟珒课题组和邵峰团队合作,在Nature Structural & Molecular Biology发表题为Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis的研究论文。该研究揭示了效应蛋白OspC3利用宿主细胞的钙调蛋白(calmodulin,CaM)作为辅助因子激活其酶学活性,特异地识别宿主靶标caspase-4/11并催化全新的精氨酸ADP-riboxanation修饰,阻断宿主细胞caspase-4/11-GSDMD焦亡通路的完整分子机理。

      研究人员发现OspC3可以有效地对静息状态未发生自剪切的caspase-4/11和细菌LPS激活后发生自剪切的caspase-4/11两种形式进行修饰,但是激活形式的caspase-4/11活性中心如果被模拟底物切割位点四肽序列的共价抑制剂zVAD不可逆地占据,会极大地削弱OspC3对caspase-4/11的修饰,这表明底物非结合状态的caspase-4/11,不论激活与否都是OspC3的底物。研究人员发现,ADP-核糖基特异性结合蛋白Af1521可与修饰后的caspase-4/11产物形成稳定的1:1复合物,通过解析Af1521与caspase-4被修饰后产物的复合物的高分率晶体结构,研究人员清晰地观察到ADP-riboxanation修饰的精确化学结构,caspase-4修饰位点R314的侧链胍基脱去一个末端Nω原子后与来自NAD+的ADP-核糖基核糖环上的C1原子和C2位羟基分别连接,形成了一个全新的五元恶唑烷环,该结果为精氨酸ADP-riboxanation这种全新的翻译后修饰提供了直接的结构证明。

      OspC3及其所属的细菌效应蛋白家族具有典型的双结构域特征,其N端结构域和任何已知的蛋白质没有序列同源性,而C端包含一个保守的ankyrin-repeat结构域(ARD),这类结构域通常介导蛋白质相互作用,因此推测该结构域是OspC3的底物识别结构域。研究人员进一步通过解析OspC3 ARD结构域与caspase-4底物复合物的晶体结构,确定了OspC3 ARD结构域通过一系列氢键网络和疏水作用特异地招募宿主靶标caspase-4/11。

      在体外重组OspC3修饰caspase-4/11的酶活实验中,研究人员发现OspC3需要几乎与底物蛋白caspase-4/11相当的量才能实现对底物的完全修饰,这有悖于酶催化底物反应高效性的经典认识。通过免疫共沉淀结合质谱的方法,研究人员鉴定出宿主的钙调蛋白CaM以Ca2+-free的形式与OspC3形成稳定的二元复合物,极大提高了OspC3的催化效率。研究人员解析了OspC3与CaM二元复合物的高分辨率晶体结构,发现Ca2+未结合状态的CaM通过两个亚结构域分别以广泛的疏水作用牢牢抓住OspC3的N端结构域,而OspC3的N端结构域呈现出经典Rossmann折叠构象,与已知的ADP-核糖基转移酶结构域具有相似的结构特征和保守的NAD+结合基序。为了进一步阐明OspC3利用NAD+作为供体催化caspase-4/11的精氨酸发生ADP-riboxanation修饰的完整酶学机理,研究人员解析了OspC3-CaM-caspase-4三元复合物及其与2'-F-NAD+(非水解型NAD+类似物)的四元复合物晶体结构,发现OspC3的N端的酶活中心通过酸性氨基酸D231固定caspase-4活性中心R314侧链胍基的末端Nω原子,使ADP-核糖基C1位靠近R314胍基的Nδ原子,从而利于NAD+烟酰胺基团的离去和在修饰位点R314 Nδ原子上发生第一步经典的ADP-核糖基修饰;而酶活中心的另一个酸性氨基酸D177则负责激活ADP-核糖基C2位的羟基亲核进攻R314侧链胍基C原子发生脱氨反应,使精氨酸侧链胍基和ADP-核糖基团形成一个恶唑烷环。研究人员将结构研究的发现利用定点突变的方法在生化、细胞和Shigella感染小鼠三个层面进行了验证,完整地阐明了OspC3利用宿主辅因子CaM特异地对caspase-4/11进行精氨酸ADP-riboxanation修饰的分子机理。

      该研究通过一系列三维结构分析与功能实验验证,揭示了痢疾杆菌效应蛋白OspC3特异地识别宿主天然免疫受体caspase-4/11,并利用宿主钙调蛋白CaM作为辅因子催化全新的精氨酸ADP-riboxanation修饰,阻断宿主细胞caspase-4/11-GSDMD焦亡防御通路的完整分子机理,也为ADP-riboxanation这种全新的翻译后修饰的酶学反应机理提供了全面深入的理解,为进一步寻找和开发新型抗菌药物或细菌减毒疫苗提供了新策略。

      相关研究工作得到中国科学院战略性先导科技专项、科学技术部重点研发计划、中国科学院青年创新促进会项目等的支持。

  • 原文来源:https://www.cas.cn/syky/202301/t20230110_4866920.shtml
相关报告
  • 《生物物理所等揭示细菌效应蛋白拮抗宿主细胞焦亡通路的分子机理》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-02-08
    • 细胞焦亡作为机体重要的天然免疫反应,在拮抗和清除病原菌感染中发挥关键作用。当革兰氏阴性菌侵入宿主细胞后,其外膜的重要病原分子模式LPS(脂多糖,也称内毒素)会被宿主细胞内的天然免疫受体caspase-4/5/11识别,LPS激活的caspase-4/5/11会进一步切割活化焦亡蛋白GSDMD释放其膜打孔活性,导致细胞焦亡,激发宿主的抗菌炎症反应。同时,细菌也采用了多种策略来逃避宿主的免疫防御,例如通过独特的III型分泌系统向宿主细胞“注入”专门的效应蛋白,干扰宿主的免疫防御通路。2021年,北京生命科学研究所邵峰团队发现痢疾杆菌(Shigella)分泌的效应蛋白OspC3可以特异识别宿主细胞内的天然免疫受体caspase-4/11,通过催化caspase酶活中心的关键精氨酸发生一种全新的ADP-riboxanation翻译后修饰使caspase-4/11失活,阻断其活化下游GSDMD介导的细胞焦亡免疫防御。然而效应蛋白OspC3是如何特异地识别宿主靶标caspase-4/11,又是如何催化新颖的ADP-riboxanation修饰拮抗细胞焦亡的精确分子机理等关键科学问题有待进一步回答。   近日,中国科学院生物物理研究所王大成/丁璟珒课题组和邵峰团队合作,在Nature Structural & Molecular Biology发表题为Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis的研究论文。该研究揭示了效应蛋白OspC3利用宿主细胞的钙调蛋白(calmodulin,CaM)作为辅助因子激活其酶学活性,特异地识别宿主靶标caspase-4/11并催化全新的精氨酸ADP-riboxanation修饰,阻断宿主细胞caspase-4/11-GSDMD焦亡通路的完整分子机理。   研究人员发现OspC3可以有效地对静息状态未发生自剪切的caspase-4/11和细菌LPS激活后发生自剪切的caspase-4/11两种形式进行修饰,但是激活形式的caspase-4/11活性中心如果被模拟底物切割位点四肽序列的共价抑制剂zVAD不可逆地占据,会极大地削弱OspC3对caspase-4/11的修饰,这表明底物非结合状态的caspase-4/11,不论激活与否都是OspC3的底物。研究人员发现,ADP-核糖基特异性结合蛋白Af1521可与修饰后的caspase-4/11产物形成稳定的1:1复合物,通过解析Af1521与caspase-4被修饰后产物的复合物的高分率晶体结构,研究人员清晰地观察到ADP-riboxanation修饰的精确化学结构,caspase-4修饰位点R314的侧链胍基脱去一个末端Nω原子后与来自NAD+的ADP-核糖基核糖环上的C1原子和C2位羟基分别连接,形成了一个全新的五元恶唑烷环,该结果为精氨酸ADP-riboxanation这种全新的翻译后修饰提供了直接的结构证明。   OspC3及其所属的细菌效应蛋白家族具有典型的双结构域特征,其N端结构域和任何已知的蛋白质没有序列同源性,而C端包含一个保守的ankyrin-repeat结构域(ARD),这类结构域通常介导蛋白质相互作用,因此推测该结构域是OspC3的底物识别结构域。研究人员进一步通过解析OspC3 ARD结构域与caspase-4底物复合物的晶体结构,确定了OspC3 ARD结构域通过一系列氢键网络和疏水作用特异地招募宿主靶标caspase-4/11。   在体外重组OspC3修饰caspase-4/11的酶活实验中,研究人员发现OspC3需要几乎与底物蛋白caspase-4/11相当的量才能实现对底物的完全修饰,这有悖于酶催化底物反应高效性的经典认识。通过免疫共沉淀结合质谱的方法,研究人员鉴定出宿主的钙调蛋白CaM以Ca2+-free的形式与OspC3形成稳定的二元复合物,极大提高了OspC3的催化效率。研究人员解析了OspC3与CaM二元复合物的高分辨率晶体结构,发现Ca2+未结合状态的CaM通过两个亚结构域分别以广泛的疏水作用牢牢抓住OspC3的N端结构域,而OspC3的N端结构域呈现出经典Rossmann折叠构象,与已知的ADP-核糖基转移酶结构域具有相似的结构特征和保守的NAD+结合基序。为了进一步阐明OspC3利用NAD+作为供体催化caspase-4/11的精氨酸发生ADP-riboxanation修饰的完整酶学机理,研究人员解析了OspC3-CaM-caspase-4三元复合物及其与2'-F-NAD+(非水解型NAD+类似物)的四元复合物晶体结构,发现OspC3的N端的酶活中心通过酸性氨基酸D231固定caspase-4活性中心R314侧链胍基的末端Nω原子,使ADP-核糖基C1位靠近R314胍基的Nδ原子,从而利于NAD+烟酰胺基团的离去和在修饰位点R314 Nδ原子上发生第一步经典的ADP-核糖基修饰;而酶活中心的另一个酸性氨基酸D177则负责激活ADP-核糖基C2位的羟基亲核进攻R314侧链胍基C原子发生脱氨反应,使精氨酸侧链胍基和ADP-核糖基团形成一个恶唑烷环。研究人员将结构研究的发现利用定点突变的方法在生化、细胞和Shigella感染小鼠三个层面进行了验证,完整地阐明了OspC3利用宿主辅因子CaM特异地对caspase-4/11进行精氨酸ADP-riboxanation修饰的分子机理。   该研究通过一系列三维结构分析与功能实验验证,揭示了痢疾杆菌效应蛋白OspC3特异地识别宿主天然免疫受体caspase-4/11,并利用宿主钙调蛋白CaM作为辅因子催化全新的精氨酸ADP-riboxanation修饰,阻断宿主细胞caspase-4/11-GSDMD焦亡防御通路的完整分子机理,也为ADP-riboxanation这种全新的翻译后修饰的酶学反应机理提供了全面深入的理解,为进一步寻找和开发新型抗菌药物或细菌减毒疫苗提供了新策略。   相关研究工作得到中国科学院战略性先导科技专项、科学技术部重点研发计划、中国科学院青年创新促进会项目等的支持。
  • 《微生物所科研团队揭示结核分枝杆菌的一种脂磷酸酶劫持宿主泛素抑制细胞焦亡的重要机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-10-14
    •  结核病(tuberculosis,TB)是由结核分枝杆菌(M. tuberculosis,Mtb)感染引起的一类重大慢性传染病。据世界卫生组织报道,2020年全球有近990万新发TB患者,并有约151万人因TB感染导致死亡。中国科学院微生物研究所刘翠华团队长期致力于Mtb与宿主互作机制方面的研究,近年来在Nature Immunology(2015)、Nature Communications(2019,2017)、Autophagy(2021)、EMBO Report(2021)、Cellular & Molecular Immunology(2018,2019)等期刊发表系列研究工作,揭示了一系列病原菌与宿主相互博弈的动态过程及分子机制,为TB防治提供了多种新思路和潜在新靶点。近日,刘翠华团队与北京师范大学邱小波团队合作,揭示了Mtb利用脂磷酸酶PtpB挟持宿主泛素进而拮抗GSDMD介导的细胞焦亡的病原免疫逃逸新机制,提供了基于病原-宿主互作界面的TB治疗新思路和潜在新靶标。   炎症小体(inflammasome)是近年来在哺乳动物免疫细胞中发现的一种多聚蛋白复合物,主要由胞质中的模式识别受体(如NLRP3和AIM2等)、凋亡相关斑点样蛋白(ASC)及caspase-1前体蛋白(pro-caspase-1)组成。当受到活化信号刺激时,炎症小体能够迅速组装并使pro-caspase-1发生自剪切产生具有酶活性的caspase-1,后者进一步剪切下游的关键效应分子gasdermin D(GSDMD)及炎性细胞因子前体pro-IL-1β和pro-IL-18,剪切后的GSDMD的N-末端效应结构域(GSDMD-N)随后在质膜内侧聚集并产生孔洞,进而介导成熟的炎性细胞因子(IL-1β和IL-18)的释放及细胞焦亡(pyroptosis)的发生。已有研究提示,炎症小体—细胞焦亡通路在宿主抵抗Mtb等病原体感染过程中发挥重要作用。然而,这些病原体是否能够以及如何逃逸该免疫机制尚不清楚。因此,进一步鉴定Mtb等病原体调控宿主炎症小体—细胞焦亡通路的关键效应蛋白并阐明其作用机理有望为TB等感染性疾病提供新的药物靶标及干预策略。   在本项研究中,研究人员通过在HEK293T细胞中构建AIM2和NLRP3炎症小体的重组系统对Mtb编码的真核样分泌蛋白进行全面筛选,鉴定出Mtb分泌的蛋白磷酸酶PtpB是宿主炎症小体—细胞焦亡通路的潜在抑制分子。进一步的研究表明,PtpB在Mtb感染时可定位至宿主细胞质膜并依赖其磷酸酶活性去磷酸化质膜上的磷脂酰肌醇-4-单磷酸(PI4P)及磷脂酰肌醇-(4,5)-二磷酸(PI(4,5)P2),从而抑制GSDMD-N在质膜上的聚集并阻止细胞焦亡及细胞因子IL-1β和IL-18的释放。PtpB虽然在细胞内具有显著的去磷酸化PI4P及PI(4,5)P2的功能,但其在细胞外仅表现出有限的脂磷酸酶活性。结构生物学分析表明PtpB的酶活中心(P-loop)被掩盖在一个盖状的柔性双螺旋结构(lid)内,提示其磷酸酶活性可能受到动态调控。在之前的研究工作中,刘翠华团队发现Mtb编码的另一种蛋白磷酸酶PtpA可通过结合宿主泛素调控自身的磷酸酶活性进而发挥免疫抑制功能(Nature Immunology,2015)。在此基础上,研究人员推断PtpB的磷酸酶活性可能也受到宿主细胞中特定分子的调控。进一步的深入探寻证实了PtpB依赖一个特殊的真核样泛素结合模序(UIM-like)通过疏水相互作用结合宿主泛素并被其激活进而去磷酸化PI4P和PI(4,5)P2,导致这两种分子在宿主细胞质膜上的丰度显著减少进而抑制GSDMD-N在质膜上的聚集及细胞焦亡的发生。随后的小鼠感染实验证明,破坏PtpB的脂磷酸酶活性或泛素结合区域可以显著增强宿主在感染早期依赖GSDMD的保护性免疫反应及清除Mtb的能力,并减轻宿主在感染晚期的病理性免疫损伤。   相关研究结果已在线发表于国际权威期刊Science,题为“A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin”。刘翠华课题组的特别研究助理柴琪瑶、客座研究生余珊珊以及博士研究生钟延昭为该论文的并列第一作者,中国科学院微生物研究所的刘翠华研究员、汪静项目研究员和北京师范大学的邱小波教授为共同通讯作者。这项工作得到了国家自然科学基金委、国家重点研发计划、中国科学院战略性先导科技专项(B类)、中国科学院青年创新促进会及中国博士后科学基金会的支持。 文章链接:https://www.science.org/doi/10.1126/science.abq0132