《宁波材料所碳化硅先驱体研究取得阶段进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-01-06
  • 碳化硅(SiC)陶瓷具有耐高温、耐腐蚀、耐磨损、耐辐照、强度大、硬度高、热膨胀率小等优异的综合性能,在能源安全领域扮演着重要的角色。目前陶瓷材料包括SiC陶瓷的成型主要采用传统的粉末方法,即从微粉制备、成型(包括压延、挤塑、干压、等静压、浇注、注射等方式)、烧结到加工这一过程。近30年来,陶瓷材料粉末成型新工艺层出不穷,在各个环节上都有所突破,但仍存在这一传统方法难以超越的局限性,主要包括难以获得均匀的化学成分、可精加工性差、不易制造复杂构件、难以解决陶瓷材料本征脆性等。陶瓷材料在加工成型方面的短板已影响到其应用领域的拓展。因此,在优化陶瓷传统成型工艺的同时研究陶瓷新型成型技术已成为陶瓷材料重要的研究方向之一。

      先驱体转化陶瓷是含硅、硼、碳、氮、氧等元素的有机物通过裂解转化形成的陶瓷材料。其具有易加工成型、陶瓷化温度低、陶瓷组成均一、可引入增强相且可通过分子设计对先驱体化学组成与结构进行调控进而实现对陶瓷组成、结构与性能的优化等优点,是制备高性能陶瓷材料的一项变革性技术。先驱体转化陶瓷对先驱体分子结构设计、元素组成控制、陶瓷转化过程的物理化学行为、以及共价键陶瓷的晶形相变等都提出了挑战。中国科学院宁波材料技术与工程研究所先进能源材料工程实验室经过规划论证,将“高性能先驱体分子结构设计与陶瓷转化”作为重点学科发展方向之一,在中国科学院和宁波市“3315计划”A类的支持下,着重对先驱体的定制化、高效转化和工程化开展攻关,在2019年已取得以下阶段性进展。

      通过SiC陶瓷先驱体的定制化,实验室在固态聚碳硅烷和液态聚碳硅烷的结构设计与合成工艺方面进行了深入研究,所合成的液态聚碳硅烷具有陶瓷产率高(1000℃下陶瓷产率可达78%)、存储时间长(>6个月)、氧含量低(~0.1wt%)、流动性好(复数粘度~0.01Pa·S)的特点,且通过结构设计结合交联工艺可实现液态聚碳硅烷瞬间或数分钟内交联固化成型。固态聚碳硅烷具有支化度低、可纺性好等特性,能够满足纤维等成型要求。(Appl. Organomet. Chem., 2019;33(2):e4720;Ceram. Int., 2019, 45(13):16380–16386;J. Am. Ceram. Soc., 2019, 102(3):1041–1048;申请专利:CN201910430199.4、CN201911016657.6、CN201911016637.9)。

      结合先驱体结构定制化和良好的可熔可溶性质成型,实验室实现了SiC先驱体高效转化为中空SiC纤维、低热导多孔SiC泡沫、复杂3D打印SiC构件、静电纺丝SiC纤维、高强度复合材料等。使SiC陶瓷从“单一应用型”向“综合服务型”转变,实现价值最大化、功能多样化、产品差异化,对相关领域起到促进推动作用。(Ceram. Int., 2019, 45(18): 24007–24013;J. Eur. Ceram. Soc., 2019, 39(6):2028–2035;Adv. Appl. Ceram., 2019, 10.1080/17436753.2019.1707413;申请专利:CN201910090356.1)

      近期,先进能源工程实验室在前期实验室小试的基础上,自主设计并成功搭建了固态聚碳硅烷和液态聚碳硅烷两个中试平台,这为后续工程化和应用研究奠定了坚实的基础。其中液态先驱体中试平台已通过运行调试,成功合成出公斤级聚碳硅烷目标产物。

      上述工作获得宁波市“3315”创新团队项目、中国科学院战略性先导科技专项、中国科学院重点部署项目等的支持。

    图1 基于先驱体转化制备SiC材料:(a)静电纺丝SiC纤维;(b)中空SiC纤维;(c)3D打印SiC先驱体;(d)3D打印SiC先驱体转化陶瓷;(e)多孔SiC泡沫;(f)多孔中空SiC纤维

  • 原文来源:http://www.nimte.ac.cn/news/progress/201912/t20191227_5476119.html
相关报告
  • 《宁波材料所在固态碳化硅先驱体组分和分子结构调控方面取得系列进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-27
    • 碳化硅(SiC)陶瓷具有高温稳定性好,耐腐蚀、耐高温氧化,强度、硬度高,热膨胀系数小等优良特性,不仅在传统工业领域获得广泛应用,而且在先进能源及空间技术等高科技领域中的应用也在不断拓展。传统SiC陶瓷的制备方法是将SiC微粉与烧结助剂球磨混合后成型烧结而成,烧结方式包括常压烧结、热压烧结、反应烧结、热等静压烧结、放电等离子烧结、重结晶烧结等。先驱体转化陶瓷(PDCs)方法是将聚碳硅烷(PCS)等先驱体通过交联固化和高温陶瓷化形成目标产品,具有分子设计性强、合成温度低、复杂陶瓷结构成型容易等优点,被认为是陶瓷领域变革性技术之一。 固态PCS材料因具有易熔易溶、硅碳化学计量比可调、元素组分丰富等特点,成为先进陶瓷基复合材料最常用的先驱体之一,但也存在诸多挑战。一方面PCS采用空气不熔化交联时需要引入较多的氧,影响最终SiC陶瓷的耐温性;另一方面PCS较低的陶瓷产率(一般在60%左右)会导致复合材料体积密度低、裂解过程产生大量微裂纹、浸渍周期长等问题。中国科学院宁波材料技术与工程研究所先进能源材料工程实验室科研人员通过探索催化体系,使通常不易进行硅氢化反应的丙烯腈(AN)与PCS发生反应,合成出新型先驱体含氰基聚碳硅烷(PCSCN)。实验结果表明,PCSCN保持了易溶可熔特性,分子量和化学组成可定制,陶瓷产率大幅提高至80%以上。此外,含有氰基PCSCN继承了PCS优良的可纺行为(如图),可以作为连续SiC纤维的替代材料。相关成果发表在陶瓷领域高水平期刊J. Eur. Ceram. Soc.(2020,40,5226-5237)上,并申请了中国专利(CN201811355027.7,CN201811354984.8)。 固态聚铝碳硅烷(PACS)由于高温下流变性能优异而成为碳化硅纤维合成最重要的先驱体之一。然而,常规高温常压合成PACS会伴生较多的环状和支化结构,降低先驱体线性分子的含量,进而影响先驱体的纺丝乃至最终产品的性能。宁波材料所先进能源材料工程实验室研究人员发展了利用液态的聚硅碳硅烷(PSCS)与含铝化合物高温高压合成PACS的方法,有效降低了合成温度。研究结果表明,在近似条件下,高温高压法研制的PACS相比高温常压法制备的PACS具有更低的支化度、较高的Si-H含量和更高的陶瓷产率,显著提高了PACS纺丝能力。相关研究成果发表在国际专业期刊Appl. Organometal. Chem.(2019, 33, e4720)和Ceram. Int.(2019, 45, 16380-16386)上,并申请了中国专利(CN201910160345.6,CN2019110438617)。在中国科学院院长基金的支持下,实验室科研人员基于小型高温高压合成PACS工艺流程,自主设计了先驱体合成的工程化装备,并初步实现了固态先驱体的高温高压法工程化制备。 以上工作得到了中国科学院院长基金、国家自然科学基金、宁波市“3315”创新团队A类项目和广东省实验室的大力支持。 图 PCS与PCSCN纤维生丝(左)和陶瓷化的SiC纤维照片(右)   (先进能源材料工程实验室 供稿)
  • 《金属所碳化硼/铝中子吸收材料研制与应用取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-28
    • 中子吸收材料又称中子毒物材料,通过其含有的大的中子吸收截面物质(如硼、镉、钆等)吸收热中子,从而抑制核裂变链式反应,主要用于核燃料与乏燃料贮存和运输中,以保证贮运的次临界安全。碳化硼增强铝(B4C/Al)中子吸收材料是由B4C颗粒添加到铝基体中形成的一种新型铝基复合材料,因其硼含量高、密度低、热导率高等优点,近年来在国外已替代传统的硼不锈钢等中子吸收材料大量应用于核燃料/乏燃料高密度贮存和运输。我国由于核电商业化较晚,中子吸收材料研发明显滞后,B4C/Al中子吸收材料长期依赖进口,严重制约了我国核电自主化与走出去的发展战略。   近年来,金属所马宗义研究员领导的课题组与中国核电工程有限公司合作,在B4C/Al中子吸收材料制备、模拟环境服役性能考核以及全尺寸工程件研制等方面开展了攻关研究。攻克了大尺寸坯锭制备过程中界面调控难题,突破了高含量B4C/Al薄板的高效、高成品率轧制成型瓶颈,开发出适用于复合材料焊接的焊接工具与焊接工艺,打通了从材料研制到器件成型的全链条技术途径,为该材料的工程化应用奠定了坚实基础。现已研制出B4C含量为15~35wt%的系列中子吸收板材,并完成了加速腐蚀、高温老化、加速辐照及硼均匀性测试(中子吸收法)等实验考核,材料性能全面达到或(如耐腐蚀性等)明显优于国外同类产品。   2014年以来,金属所先后为核电重大专项《核燃料组件运输容器设计制造技术项目》、《高温气冷堆核燃料元件运输、贮存容器设计与制造技术及运输过程技术研究项目》两个项目的样机提供了多批次B4C/Al板材,率先实现了B4C/Al中子吸收材料的国产化供货。2014年5月供货的中子吸收板用于国家科技重大专项及中核集团科技专项“龙舟-CNSC 乏燃料运输容器研制”项目中原型样机,近日该样机在西安核设备有限公司通过了验收。这标志着我国成功自主研制了大型乏燃料运输容器,填补了国内空白,这对我国乏燃料运输具有里程碑意义。作为乏燃料运输容器关键材料国产化的关键一环,金属所研制的B4C/Al中子吸收材料为容器全面国产化提供了重要支持,同时也为该材料的更广泛应用奠定了基础。   同时,金属所针对全球首台高温气冷堆新燃料元件运输、贮存容器对中子吸收材料筒状结构的需求,在国内首次实现中子吸收材料的卷板操作和搅拌摩擦焊接,实现了中子吸收材料由板状结构向筒状结构的突破。目前华能山东石岛湾核电厂高温气冷堆核电站示范工程新燃料元件运输、贮存容器已正式进入批量生产阶段,金属所承接了该容器所有中子吸收板的供货任务。   目前课题组正致力于为下一代乏燃料干式贮运容器开发耐高温结构功能一体化B4C/Al中子吸收材料。   上述研究工作得到了NSFC-辽宁省联合基金(U1508216)、面上基金(51771194)、中国科学院青年创新促进会项目(2016179)等项目的支持。