《植物所揭示硅藻光系统II-捕光天线超级复合体结构》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 陈方
  • 发布时间:2020-04-08
  • 2019年2月8日Science报道,中国科学院植物研究所沈建仁和匡廷云团队首次报道了羽纹纲硅藻——三角褐指藻FCP二聚体的1.8埃分辨率的晶体结构,描绘了叶绿素c和岩藻黄素在硅藻光合膜蛋白中的结合细节。2019年8月2日,该团队与清华大学隋森芳团队合作在Science发文,利用单颗粒冷冻电镜技术解析了一种中心纲硅藻(Chaetoceros gracilis)的PSII-FCPII超级复合体的3.0埃分辨率的三维结构,这也是国际上首次报道硅藻光系统-捕光天线超级复合体的结构。
    研究发现,超复合物包含两个原体,每个原体在PSII核心周围具有四个四聚体和六个单体FCPII,其在腔表面含有五种外源氧进化蛋白。该结构揭示了巨大的色素网络的排列,有助于硅藻中有效的光能收集,转移和消散过程。该成果是该合作团队在前期红藻、绿藻的光合膜蛋白结构与功能研究工作的拓展,为阐明硅藻PSII-FCPII超级复合体中独特的光能捕获、传递和转化以及高效的光保护机制提供了重要的基础,为揭示PSII复合体的进化演变提供了重要线索。该成果也为PSII的超快动力学、理论计算和人工模拟光合作用研究提供了新理论依据,同时为后续指导设计新型作物、提高作物的捕光和光保护效率提供了新的思路。

相关报告
  • 《生物物理所揭示植物的光适应与捕光调节机制》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-06-22
    • 6月8日,《科学》(Science)期刊发表了中国科学院生物物理研究所常文瑞/李梅研究组、章新政研究组的合作研究成果,题为Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II。该项工作首次报道了玉米光系统I-捕光复合物I-捕光复合物II(PSI-LHCI-LHCII)超级复合物的高分辨率冷冻电镜结构,揭示了植物适应自然界多变光照条件,对两个光系统的捕光进行调节,从而平衡能量分配的分子基础。   光合作用为世界上几乎所有的生命体提供赖以生存的物质和能量,放氧光合作用还维持着地球的大气环境。放氧光合生物中的光系统I(PSI)和光系统II(PSII)吸收光能,共同完成光驱动的电子传递,其能量传递和转化效率高达90%以上。由于植物所处的自然环境是不断变化的,植物进化出非常精巧的调节机制,从而最大限度地优化光合作用效率并避免光损伤。对光合作用调节机制的研究不仅具有重要的理论意义,还有着广泛的应用价值,能够为农业上作物的增产抗逆等研究提供结构基础和思路。   状态转换是植物和绿藻中一种重要的光合作用调节机制,由于植物的PSI和PSII的捕光系统色素组成不同,导致对不同能量光的吸收能力不同,从而在自然环境下,受光照条件变化的影响,能量在两个光系统间的分配不均衡。状态转换是植物适应光环境变化、平衡激发能在两个光系统间分配的一种快速响应机制。这个过程是通过PSII上主要捕光天线LHCII的可逆磷酸化,并进而在PSII和PSI间迁移来实现的。当PSII被过度激发时,一部分LHCII会被磷酸化,从PSII上解离下来并结合到PSI上,形成PSI-LHCI-LHCII超级复合物。这部分LHCII作为PSI的外周天线,增加了传递到PSI 反应中心的能量,从而实现了激发能在PSII和PSI之间的平衡分配。解析高分辨率PSI-LHCI-LHCII复合体的结构能够从分子水平上揭示复合物中各个蛋白亚基的排列、PSI和LHCII的相互作用方式以及可能的能量传递途径,进而揭示植物状态转换的分子机理。   生物物理所的联合研究团队通过密切合作,协同攻关,以最高的效率取得了突破性进展,完成了PSI-LHCI-LHCII超级复合体3.3埃分辨率冷冻电镜结构解析。该复合体是一个约700kDa的膜蛋白-色素复合体,结构精确指认了其中的21个蛋白亚基,定位了202个叶绿素分子,47个类胡萝卜素分子以及众多的其它辅因子(如图)。该工作首次解析了LHCII的N末端磷酸化位点,揭示了LHCII和PSI的相互作用方式,构建了PSI中的全部亚基,包括以往PSI晶体结构中缺失的两个亚基PsaO和PsaN,并发现这两个亚基分别介导了LHCI和LHCII向PSI核心的能量传递。该复合体结构弥补了过去发表的PSI晶体结构中缺失的结构信息及潜在能量传递途径,并为深入研究植物状态转换的分子机理提供了重要基础。该项工作所提供的数据有望启发并促进人工光合作用体系的设计优化等应用研究。   生物物理所研究员李梅和章新政为论文的共同通讯作者,副研究员潘晓伟、马军和苏小东为该项工作的共同第一作者,中国科学院院士、生物物理所研究员常文瑞以及研究员柳振峰参与了该项研究工作,这也是该团队继过去两年在植物光系统II超级复合物结构研究工作(Nature 2016;Science 2017)发表之后的又一重要突破。该研究工作得到了科技部重点研发计划、中国科学院B类先导专项、中国科学院前沿科学重点研究项目、自然科学基金和国家“青年相关人才计划”的共同资助。数据收集和样品分析等工作得到了生物物理所“生物成像中心”、生物物理所蛋白质科学研究平台等有关工作人员的大力支持和帮助。
  • 《 植物所等揭示小立碗藓独特光合膜色素蛋白复合体的精细结构及组装原理》

    • 来源专题:生物育种
    • 编译者:姜丽华
    • 发布时间:2023-04-28
    • 光系统I(PSI)和光系统II(PSII)是光合作用光反应过程中执行光能捕获、传递和转化的重要超分子蛋白质机器。光合生物为了适应不同的光环境,进化出多种多样的光能捕获机制。苔藓植物代表植物演化过程中水生植物到陆生植物的过渡类群,位于藻类和维管植物的中间位置。小立碗藓(Physcomitrium patens)作为一种重要的模式生物,有着独特和多样的捕光天线组成,对其捕光天线与光系统蛋白复合体的结构研究将为揭示早期植物对陆生环境的适应提供重要线索。   中国科学院植物研究所光合膜蛋白结构生物学研究组与浙江大学合作,利用单颗粒冷冻电镜技术解析了小立碗藓光系统I-捕光天线I(PSI-LHCI)-捕光天线II(LHCII)-Lhcb9超大分子复合物2.68埃分辨率的结构,发现该复合物整体包含1个PSI-LHCI复合体、1个LHCII三聚体和1个小立碗藓特有的捕光天线亚基Lhcb9。其中,PSI-LHCI里包含了8个LHCI天线亚基,比高等植物PSI-LHCI多4个LHCI天线亚基。LHCII三聚体位于PsaH-PsaL-PsaO的一侧,并通过Lhcbm2的N末端磷酸化位点与PsaH、PsaL和PsaO亚基相互作用。Lhcb9介导了LHCII三聚体和外侧4个LHCI天线亚基与PSI核心的连接。基于超分子复合体中色素分子的结构排列,研究进一步发现了多条小立碗藓独特的光能捕获和传递途径。其中,Lhcb9在外周捕光天线向PSI核心的激发能量传递方面起着重要作用。   该研究揭示了小立碗藓PSI-LHCI-LHCII-Lhcb9超大分子复合体的详细蛋白结构、色素排布以及外围捕光天线到核心的激发能量转移途径,为阐明植物从水生到陆生演化过程中PSI超分子复合体的结构变化提供了重要线索,并对剖析苔藓植物光合膜蛋白动态组装和适应陆地环境的分子机制具有重要意义。同时,该研究为解析光合生物光适应和光保护机制的多样性提供了重要信息,并对设计新型高光效光合系统和环境耐受型作物提供重要启示。   4月24日,相关研究成果在线发表在《自然-植物》(Nature Plants)上。研究工作得到国家重点研发计划、中国科学院战略先导科技专项和中国科学院稳定支持基础研究领域青年团队计划等的支持。首都师范大学科研人员参与研究。