《我国学者在富锂锰基正极材料研究方面取得进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-05-19
  • 在国家自然科学基金项目(批准号:52272253、52472266)等资助下,中国科学院宁波材料技术与工程研究所刘兆平研究员与合作者在新一代高比能锂电池关键材料领域取得新进展。相关研究成果以“Negative-thermal expansion and oxygen-redox electrochemistry”为题,于2025年3月发表在《自然》(Nature)上。论文链接:https://doi.org/10.1038/s41586-025-08765-x。

      发展高比能锂电池技术是提高电动汽车、电动航空器续航里程的关键。富锂锰基正极材料凭借阴离子(氧)氧化还原提供额外容量,放电比容量高达300 mAh/g,可使电池能量密度提升30%以上,被视为下一代锂电池正极材料的理想之选。然而,富锂锰基正极材料在实际应用中存在电压降,影响长期稳定性。这一问题的根源在于充放电过程中氧活性呈现显著不对称性,这导致晶格储能持续累积并驱动材料发生不可逆的结构转变,引发电压衰减和容量衰退。实现高能量密度锂电池的长期稳定工作,已成为下一代锂电池技术亟需攻克的关键难题。

      中国科学院宁波材料技术与工程研究所刘兆平研究员与合作者借助原位加热同步辐射X射线衍射技术,首次发现富锂锰基正极材料在高温时的反常收缩行为,并证实了该现象在其它氧活性正极材料中具有普适性。研究团队结合充放电测试与热力学计算,揭示了氧框架结构无序的可逆转变机制:在加热条件下,亚稳态材料中的结构无序向动态有序转变,致使晶胞参数反常收缩。基于上述发现,研究团队构建了可逆氧活性容量贡献比γ与负热膨胀系数α的定量关系,成功制备出热膨胀系数趋近于零的新型材料,实现了从现象观测到定量设计的跨越。

      该研究在方法论上取得两方面突破,一是发展了基于热激活动力学的结构无序度动态表征技术,有效解决了传统静态结构分析在亚稳态体系表征上的难题;二是提出了“结构无序度-功能特性”逆向设计策略,通过氧活性调控实现材料热膨胀行为的优化。此外,研究团队构建了基于非平衡态热力学的“电化学退火”模型,首次在电化学体系中实现了亚稳态材料的动态调控。研究结果表明:在4.0 V临界电压条件下,富锂锰基正极材料展现出独特的电压记忆效应,其晶格氧重构活化能大幅降低,促使结构无序发生有序重组,实现近100%的电压修复。

      该研究提出了借助智能调控充电策略定期修复富锂锰基正极材料结构缺陷的应用方案,为延长富锂锰基电池寿命开辟了新途径。这些研究成果加深了对材料热力学行为的理解,为新型功能材料设计和电池性能优化提供了重要的理论支撑。

  • 原文来源:https://www.nsfc.gov.cn/publish/portal0/tab448/info94837.htm
相关报告
  • 《我国学者在界面光热盐湖提锂技术研究方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-10-25
    • 在国家自然科学基金项目(批准号:51925204、92262305)等资助下,南京大学朱嘉教授与合作者在盐湖锂资源绿色开发领域取得进展。相关成果以“界面光热盐湖提锂技术(Solar transpiration–powered lithium extraction and storage)”为题,于2024年9月27日在线发表于《科学》(Science)。论文链接:https://www.science.org/doi/10.1126/science.adm7034。   锂作为全球能源转型中的战略性关键金属,广泛应用于电动汽车电池和可再生能源储能系统。盐湖型锂矿是全球锂资源的主要来源,以我国为例,青藏高原蕴藏着丰富的盐湖锂矿资源。然而,由于盐湖化学条件复杂以及环境保护要求严格,至今尚未实现大规模开采,成为我国盐湖锂资源开发的“卡脖子”难题。因此,发展绿色、环保、可持续的盐湖提锂新技术,是破解这一难题的关键,具有重要的经济价值和战略意义。   朱嘉教授团队借鉴盐土植物对盐分的“选择性吸收-储存-释放”机制,开发了界面光热盐湖提锂材料与器件(STLES,图A-B)。研究团队采用高效光热转换的铝基等离激元蒸发器(图C)作为界面光热层,实现了水的快速蒸发并在百纳米通道内产生超高毛细压强。同时,采用亲水多孔的二氧化硅陶瓷作为锂盐存储层(图D),聚酰胺纳滤膜作为离子筛分层(图E),实现了锂离子的选择性提取和存储。装置运行过程中,水和锂盐在毛细压强作用下穿过离子筛分层进入存储层,随后通过水循环系统收集,完成装置再生。研究结果表明,该技术能够从稀释的盐湖卤水中高效提取锂,并在超过500小时的连续运行中保持优异的稳定性,展现了长期应用的巨大潜力。此外,该技术兼容性强,通过优化离子筛分层和采用多级提锂工艺,锂选择性分别提升了6倍和40倍。模块化设计还使得锂产量能够随模块数量线性增长,进一步增强了该项技术的实用性和扩展性。   该工作通过界面光热盐湖提锂技术实现了盐湖中锂资源的有效提取,有望推动我国青藏盐湖锂资源的绿色开发,减少我国对进口锂矿的依赖,保障我国战略性关键金属锂的安全供给。
  • 《我国学者在高效稳定钙钛矿太阳能电池方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-06
    • 图 (A)器件结构示意图;(B、C)不同构型的电池老化后的ToF-SIMS深度剖面图。(D)无MoS2钝化和有MoS2钝化的钙钛矿的相变能量曲线。(E)钙钛矿、MoS2/钙钛矿、MoS2/钙钛矿/MoS2薄膜的TRPL衰减曲线。(F)在中国计量科学研究院认证的最优钙钛矿太阳能电池性能;(G)最优钙钛矿微型组件性能;(H)钙钛矿太阳能电池的高温运行稳定性。   在国家自然科学基金项目(批准号:52125206、52302320)等资助下,北京大学周欢萍教授与合作者在高效稳定钙钛矿太阳能电池方面取得进展。相关研究成果以“晶圆级单层硫化钼集成实现高效稳定钙钛矿太阳能电池(Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells)”为题,于2025年1月10日在线发表于《科学》(Science),论文链接:https://www.science.org/doi/10.1126/science.ado2351。   金属卤化物钙钛矿以其优越的光电性能和低廉的成本成为最有前景的新一代光伏材料。尽管钙钛矿太阳能电池发展迅速,但同时实现高效和稳定仍是巨大挑战。卤化物钙钛矿由于其软晶格和相对较弱的键,在太阳能电池运行过程中容易降解。即使通过封装来隔离水分和氧气,钙钛矿在热、光照和电场下的不稳定性仍是其商业化应用亟需解决的关键问题。   周欢萍教授团队提出将晶圆级连续单层MoS2集成到钙钛矿层的上、下界面以形成稳定器件构型,从而显著增强钙钛矿太阳能电池的效率和稳定性。研究表明,晶圆级MoS2插层由于连续二维形态,从物理上最大程度地阻挡了钙钛矿离子向载流子传输层的迁移。而且,MoS2通过与钙钛矿强配位相互作用在化学上稳定了α相FAPbI3。MoS2插层还通过与钙钛矿形成Pb-S键化学钝化钙钛矿表面缺陷,并通过与钙钛矿I型能带排列阻挡少子复合,从而显著减少了载流子非辐射复合。此外,单层MoS2的原子级厚度克服了钝化质量和载流子传输之间难以协同的挑战,最大限度地提高了钙钛矿太阳能电池的开路电压(认证VOC=1.20 V)和填充因子(认证FF=84.3%)。包含MoS2/钙钛矿/MoS2结构的钙钛矿太阳能电池和组件分别实现了高达26.2%(认证稳态效率为25.9%)和22.8%的光电转换效率。此外,电池表现出卓越的湿热稳定性(在85℃和85%相对湿度下老化1200小时后保留初始效率的95%)、光照稳定性(在连续一个太阳照射下在开路状态下老化2000小时后保留初始效率的96.6%)和运行稳定性(在室温下连续一个太阳照射下在最大功率点跟踪2000小时后效率基本没有衰减,在85℃下连续一个太阳照射下在最大功率点跟踪1200小时后保留初始效率的96%)。   本研究通过界面工程将二维材料与软晶格光电材料结合起来,为提高钙钛矿基光电器件的性能提供了有效策略,并可以扩展到传感器、探测器等其他相关领域支撑高效稳定器件的构建。