《我国学者在富锂锰基正极材料研究方面取得进展》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-05-19
  • 在国家自然科学基金项目(批准号:52272253、52472266)等资助下,中国科学院宁波材料技术与工程研究所刘兆平研究员与合作者在新一代高比能锂电池关键材料领域取得新进展。相关研究成果以“Negative-thermal expansion and oxygen-redox electrochemistry”为题,于2025年3月发表在《自然》(Nature)上。论文链接:https://doi.org/10.1038/s41586-025-08765-x。

      发展高比能锂电池技术是提高电动汽车、电动航空器续航里程的关键。富锂锰基正极材料凭借阴离子(氧)氧化还原提供额外容量,放电比容量高达300 mAh/g,可使电池能量密度提升30%以上,被视为下一代锂电池正极材料的理想之选。然而,富锂锰基正极材料在实际应用中存在电压降,影响长期稳定性。这一问题的根源在于充放电过程中氧活性呈现显著不对称性,这导致晶格储能持续累积并驱动材料发生不可逆的结构转变,引发电压衰减和容量衰退。实现高能量密度锂电池的长期稳定工作,已成为下一代锂电池技术亟需攻克的关键难题。

      中国科学院宁波材料技术与工程研究所刘兆平研究员与合作者借助原位加热同步辐射X射线衍射技术,首次发现富锂锰基正极材料在高温时的反常收缩行为,并证实了该现象在其它氧活性正极材料中具有普适性。研究团队结合充放电测试与热力学计算,揭示了氧框架结构无序的可逆转变机制:在加热条件下,亚稳态材料中的结构无序向动态有序转变,致使晶胞参数反常收缩。基于上述发现,研究团队构建了可逆氧活性容量贡献比γ与负热膨胀系数α的定量关系,成功制备出热膨胀系数趋近于零的新型材料,实现了从现象观测到定量设计的跨越。

      该研究在方法论上取得两方面突破,一是发展了基于热激活动力学的结构无序度动态表征技术,有效解决了传统静态结构分析在亚稳态体系表征上的难题;二是提出了“结构无序度-功能特性”逆向设计策略,通过氧活性调控实现材料热膨胀行为的优化。此外,研究团队构建了基于非平衡态热力学的“电化学退火”模型,首次在电化学体系中实现了亚稳态材料的动态调控。研究结果表明:在4.0 V临界电压条件下,富锂锰基正极材料展现出独特的电压记忆效应,其晶格氧重构活化能大幅降低,促使结构无序发生有序重组,实现近100%的电压修复。

      该研究提出了借助智能调控充电策略定期修复富锂锰基正极材料结构缺陷的应用方案,为延长富锂锰基电池寿命开辟了新途径。这些研究成果加深了对材料热力学行为的理解,为新型功能材料设计和电池性能优化提供了重要的理论支撑。

  • 原文来源:https://www.nsfc.gov.cn/publish/portal0/tab448/info94837.htm
相关报告
  • 《我国学者在界面光热盐湖提锂技术研究方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-10-25
    • 在国家自然科学基金项目(批准号:51925204、92262305)等资助下,南京大学朱嘉教授与合作者在盐湖锂资源绿色开发领域取得进展。相关成果以“界面光热盐湖提锂技术(Solar transpiration–powered lithium extraction and storage)”为题,于2024年9月27日在线发表于《科学》(Science)。论文链接:https://www.science.org/doi/10.1126/science.adm7034。   锂作为全球能源转型中的战略性关键金属,广泛应用于电动汽车电池和可再生能源储能系统。盐湖型锂矿是全球锂资源的主要来源,以我国为例,青藏高原蕴藏着丰富的盐湖锂矿资源。然而,由于盐湖化学条件复杂以及环境保护要求严格,至今尚未实现大规模开采,成为我国盐湖锂资源开发的“卡脖子”难题。因此,发展绿色、环保、可持续的盐湖提锂新技术,是破解这一难题的关键,具有重要的经济价值和战略意义。   朱嘉教授团队借鉴盐土植物对盐分的“选择性吸收-储存-释放”机制,开发了界面光热盐湖提锂材料与器件(STLES,图A-B)。研究团队采用高效光热转换的铝基等离激元蒸发器(图C)作为界面光热层,实现了水的快速蒸发并在百纳米通道内产生超高毛细压强。同时,采用亲水多孔的二氧化硅陶瓷作为锂盐存储层(图D),聚酰胺纳滤膜作为离子筛分层(图E),实现了锂离子的选择性提取和存储。装置运行过程中,水和锂盐在毛细压强作用下穿过离子筛分层进入存储层,随后通过水循环系统收集,完成装置再生。研究结果表明,该技术能够从稀释的盐湖卤水中高效提取锂,并在超过500小时的连续运行中保持优异的稳定性,展现了长期应用的巨大潜力。此外,该技术兼容性强,通过优化离子筛分层和采用多级提锂工艺,锂选择性分别提升了6倍和40倍。模块化设计还使得锂产量能够随模块数量线性增长,进一步增强了该项技术的实用性和扩展性。   该工作通过界面光热盐湖提锂技术实现了盐湖中锂资源的有效提取,有望推动我国青藏盐湖锂资源的绿色开发,减少我国对进口锂矿的依赖,保障我国战略性关键金属锂的安全供给。
  • 《我国学者在塑性热电材料领域取得新进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-08-20
    • 在国家自然科学基金项目(批准号:52061135103、51873236)等资助下,中山大学化学学院和广东工业大学轻工化工学院郑治坤教授,针对材料刚度与韧性难以兼得和高结晶度材料易碎等问题,通过全新晶界-编织晶界构建,获得了高韧性、高弹性、高机械强度的全结晶聚合物膜,为全结晶聚合物膜在分离、光电、柔性器件等领域的应用奠定了坚实的基础。相关成果以“弹性共价有机骨架单晶膜(Elastic films of single-crystal two-dimensional covalent organic frameworks)”为题,于2024年6月27日发表在《自然》(Nature)杂志上,论文链接:https://www.nature.com/articles/s41586-024-07505-x。 高结晶度材料的机械物理性能主要取决于其缺陷结构,缺陷特别是晶界缺陷严重破坏高结晶度材料的机械物理性能,而天然和合成晶态材料通常为多晶,故晶态材料机械强度通常不高、易碎。与此同时,与各种材料一样,晶态材料的刚性与韧性难以兼得,同步增强刚性和韧性并改善脆性是晶态材料领域一直面临的科学和工程难题。 鉴于制品可通过编织增强机械强度,且编织结构广泛存在于非晶聚合物中,该研究团队通过引入牺牲性非晶聚合物组分的方式,以非晶聚合物组分为“梭”,利用其自发缠绕、穿插的特性,编织全结晶聚合物膜,形成编织晶界。通过聚合网络提供刚性,通过晶界处编织结构的滑动耗散能量增强韧性。所得全结晶聚合物膜机械强度和断裂强度高,其抗压性能接近致密材料铝合金,而断裂强度和断裂伸长率优于铝合金。受力冲击断裂时,力学损伤限制在受力集中点,裂纹不扩展,裂纹附近膜的机械性能与断裂前无差别;对于一般全结晶材料,裂纹一旦形成便会迅速扩展,从而对机械性能造成严重影响。更重要的是,所得全结晶材料耐搓揉,这是目前其它全结晶材料难以实现的机械性能。 该工作为全结晶材料在柔性器件和分离膜领域的应用奠定了基础。柔性晶体材料可用于生产柔性芯片、柔性显示器、柔性电池、柔性传感器等。膜分离技术则已普遍用于化工、环保、能源、生物工程等领域。与常规膜分离相比,全结晶聚合物膜由于规整度高有望以更高效率分离出更高纯度的物质,特别是在传统分离膜难以应用的高附加值领域,如化工中间体精准分离、高纯电子化学品及药物中间体纯化等。