《Science子刊:从结构上揭示HIV整合酶对度鲁特韦产生耐药性机制》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-07-25
  • 度鲁特韦是临床上用于治疗人类免疫缺陷病毒(HIV)感染的最有效的抗病毒药物之一。在一项新的研究中,来自美国国家卫生研究院和索尔克研究所的研究人员发现了HIV对度鲁特韦产生耐药性的分子机制。具体而言,他们揭示了一种称为整合酶(integrase)的HIV蛋白的三维结构变化如何导致这种病毒对度鲁特韦产生耐药性,以及其他化合物如何可能能够克服这种耐药性。相关研究结果发表在2023年7月21日的Science Advances期刊上,论文标题为“Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants”。

    度鲁特韦是临床上用于治疗人类免疫缺陷病毒(HIV)感染的最有效的抗病毒药物之一。在一项新的研究中,来自美国国家卫生研究院和索尔克研究所的研究人员发现了HIV对度鲁特韦产生耐药性的分子机制。具体而言,他们揭示了一种称为整合酶(integrase)的HIV蛋白的三维结构变化如何导致这种病毒对度鲁特韦产生耐药性,以及其他化合物如何可能能够克服这种耐药性。相关研究结果发表在2023年7月21日的Science Advances期刊上,论文标题为“Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants”。

    他们发现,在所有HIV整合酶变体中,4d 仍能有效阻断 HIV 将它的基因整合到人类细胞中的能力。这表明4d 或这种化合物的变体可能有效地用于治疗对度鲁特韦产生耐药性的患者体内的HIV病毒。

    关于4d如何与对度鲁特韦有耐药性的HIV整合酶蛋白结合的结构数据也提示着了新的药物如何克服这种耐药性。论文共同通讯作者、美国国家卫生研究院下属国家糖尿病、消化及肾脏疾病研究所的Robert Craigie说,“4d实际上只是如何克服耐药性的一个例子,但它为我们提供了一些基本原则,我们可以从中学习设计其他疗法。4d分子的一部分像平板一样堆叠在HIV整合酶蛋白-DNA组装体的一部分之上,这种方式可能能够在其他化合物中重现。”

    接下来,这些作者将研究HIV整合酶变体是如何进化的---包括那些尚未在患者身上见到但未来可能出现的变体---以及它们如何影响对临床上使用的最佳药物的反应以及HIV感染人类的能力。

    参考资料:

    Min Li et al. Mechanisms of HIV-1 integrase resistance to dolutegravir and potent inhibition of drug-resistant variants. Science Advances, 2023, doi:10.1126/sciadv.adg5953.

  • 原文来源:https://news.bioon.com/article/3829e831524b.html
相关报告
  • 《法国科学家揭示细菌接触抗生素时产生耐药性的新机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-06-03
    • 大肠杆菌能够合成抗药性蛋白,即便在旨在抑制细胞生长的抗生素存在下,也是如此。这是法国研究人员在一项新的研究中报道的研究结果。他们还发现了这种细菌是如何实现这一壮举的:一种保存完好的膜泵将抗生素从细胞中转运出去---只要足够长的时间就可以让细胞有时间接受来自相邻细胞的编码抗药性蛋白的DNA。相关研究结果发表在2019年5月24日的Science期刊上,论文标题为“Role of AcrAB-TolC multidrug efflux pump in drug-resistance acquisition by plasmid transfer”。 美国东新墨西哥大学微生物学家Manuel Varela(未参与这项新的研究)表示,“这是一个重要的发现。它将有助于解释细菌在遇到抗生素的毒性水平时如何设法传播抗菌素耐药性。” 这一发现让论文通讯作者、法国里昂大学细菌遗传学家Christian Lesterlin感到吃惊。他和他的同事们最初开始开发一种实时显微镜系统的项目,以便详细观察质粒转移---细菌细胞彼此分享DNA的过程。通过使用精心设计的荧光蛋白,一旦它们在新的宿主体内表达,他们就能够追踪质粒将编码它们的DNA从供体细胞转移到受体细菌以及所表达的荧光蛋白。 他们以大肠杆菌习惯性地分享抗生素耐药基因为例,观察到通过将编码TetA蛋白---一种让细胞对四环素产生耐药性的膜泵---的DNA从细胞中运出,从而将它传递出去。不久之后,他们观察到质粒DNA进入非耐药性细胞中,一段时间后,红色荧光点出现在受者细胞的膜上,这表明TetA蛋白发生表达,而且这些非耐药性细胞对四环素产生抗性。 这种抗生素通常用于家畜,但有时也用于治疗肺炎、呼吸道感染和其他疾病,通常会抑制缺乏TetA的细菌的生长,但是通过采用这种机制,许多细菌菌株正在变得具有耐药性。在最初的实验中四环素并不存在,所以为了了解这个过程是如何受到这种药物本身的影响,这些研究人员将细菌细胞暴露在高浓度的四环素中,并再次将它们置于显微镜下。 正如所料,这些研究人员观察到质粒DNA进入新的非耐药性细胞中。这是预料之中的,这是因为四环素不会阻碍这一过程。相反,它旨在阻止蛋白合成。令人吃惊的是,他们发现一些新的之前缺乏TetA蛋白的受者细胞中出现红色荧光,这些细胞以前没有TetA蛋白质:显然,尽管暴露于四环素中,它们仍然能够合成包括TetA在内的蛋白。Lesterlin回忆说:“我们花了很多很长时间才证实了这个结果,这非常违反直觉,我们很难确信它确实发生了。” 这些研究人员对这些细胞能够做到这一点进行了有根据的猜测:众所周知,许多细菌膜都含有一种称为AcrAB-TolC的多药外排泵,这种泵能够将很多抗生素从细胞中运出,他们认为,在四环素能够阻止蛋白合成和细胞生长之前,这种泵将它从细胞中运出。为了验证这一想法,他们设计了几种突变体,每种突变体在编码组成这种泵的不同蛋白的多个基因中的一个上发生突变。 他们发现这些突变体虽然从相邻细胞接受了携带TetA遗传密码的质粒,却不能合成TetA蛋白。在缺乏功能性外排泵的情形下,这些突变体不能将四环素从细胞中运出。随着抗生素水平在细胞内激增,它们不再能够合成蛋白,也就不能生长。 这些研究人员表示,当功能正常时,AcrAB-TolC泵将抗生素浓度保持在足够低的水平,为细菌细胞合成质粒DNA中编码的抗性蛋白赢取了时间。在这种情况下,它允许TetA蛋白产生,随后将更多的四环素从细胞运出。最终,细菌可以在抗生素的存在下具有耐药性。正如Lesterlin所说,“对细菌来说,这是比人类健康更好的消息。” 美国科罗拉多大学博尔德分校化学工程师和微生物学家Anushree Chatterjee(未参与这项新的研究)指出,“多药外排泵AcrAB-TolC在这个领域早已广为人所知。”不过,她说,事实上,它有助于细菌在接触抗生素的同时获得抗药性,这一消息是新闻。看到细菌能做这么多事情总是令人关注的。” 她说,这些发现具有广泛的影响,这是因为AcrAB-TolC在细菌中是非常保存的,而且这种其机制并不仅限于四环素。 Lesterlin和他的同事们证明这种泵还允许细菌在其他的抑制基因表达的抗生素---比如,抑制翻译的氯霉素和抑制转录的利福平---存在的情况下合成抗药性蛋白。 Lesterlin补充说,这种机制与所谓的不会杀死仅能抑制细菌生长的抑菌抗生素(bacteriostatic antibiotics)有关。他猜测这也将适用于在细菌产生耐药性之前直接将它们破坏的溶菌抗生素(bacteriolytic antibiotics)。 Chatterjee和Varela都对这项新研究进行了深入研究,其研究结果非常可靠,Varela对Lesterlin团队开发的技术印象特别深刻,这种技术可以在观察TetA蛋白合成的同时观察质粒DNA在细胞之间的转移。 Varela补充道,“这些作者还阐明了可作为开发新型抗菌试剂的新靶点的关键细菌机制。”比如,人们可能通过靶向AcrAB-TolC泵来制造抗生素---一些实验室正在研究这种方法。或者,人们可能能够靶向调节它产生的基因---这个角度吸引了Chatterjee。传统的抗生素设计方法在很大程度上依赖于靶向特定蛋白的小分子,而且对其中的许多小分子而言,细菌已经见过很多年了,最终选择了更多的耐药机制。 Chatterjee说,“我们需要研究非传统的途径。允许细胞应对这些应激情况的调节机制是什么?我认为靶向这些过程似乎,有助于开发从一开始就有望阻止耐药性产生的更智能疗法。”
  • 《Science子刊:从结构上揭示钙蛋白酶抑制剂双重抑制新冠病毒主蛋白酶和人类组织蛋白酶L机制,有助开发更有效的药物用于治疗新冠》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-19
    • SARS-CoV-2是引起COVID-19疾病的呼吸道病毒,它通过多个步骤攻击人体。进入肺部深处的细胞和劫持人类宿主细胞的分子机器以产生病毒自身的副本是最早的两个步骤---这两个步骤对于病毒感染都是至关重要的。 在一项新的研究中,来自美国亚利桑那大学和南佛罗里达大学等研究机构的研究人员发现一些现有的化合物可以同时抑制SARS-CoV-2在人体细胞内复制所需的关键病毒蛋白--主蛋白酶(main protease, Mpro)和对病毒进入宿主细胞很重要的人类蛋白---组织蛋白酶L(cathepsin L),从而为设计针对COVID-19的抗病毒药物提供了启示。相关研究结果近期发表在Science Advances期刊上,论文标题为“Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against Mpro and cathepsin L”。 论文共同通讯作者、南佛罗里达大学摩萨尼医学院分子医学副教授Yu Chen博士说,“如果我们能够开发出关闭或显著减少这两个过程---病毒进入和病毒复制---的化合物,这种双重抑制可能会增强这些化合物在治疗冠状病毒感染方面的效力。打个比喻,这就像一石二鸟。”他擅长基于结构的药物设计。 这项新的研究建立之前的研究工作---鉴定出并分析了几种有前景的现有抗病毒药物作为治疗COVID-19的候选药物---的基础之上。所有被选中的候选药物都靶向Mpro,以阻断SARS-CoV-2在实验室培养的人类细胞内的复制。 其中两种化合物,即钙蛋白酶(calpain)抑制剂II和XII,在生化测试中对Mpro的活性不如另一种名为GC-376的候选药物。然而,论文第一作者、Chen博士实验室的博士生Michael Sacco说,钙蛋白酶抑制剂,特别是钙蛋白酶抑制剂XII,实际上比GC-376在细胞培养物中杀死SARS-CoV-2的效果更好。 Sacco说,“我们想,如果这些钙蛋白酶抑制剂不能那么有效地抑制这种冠状病毒的Mpro,那么它们一定是在做其他事情方能解释它们的抗病毒活性。”他们从其他研究小组所做的研究中了解到,钙蛋白酶抑制剂可以阻断其他的蛋白酶,包括组织蛋白酶L,这是一种参与介导SARS-CoV-2进入细胞的关键人类宿主蛋白酶。 在这项新的研究中,这些研究人员使用了先进的技术,特别是X射线晶体学技术,以直观地了解钙蛋白酶抑制剂II和XII如何与病毒蛋白Mpro相互作用。他们观察到,钙蛋白酶II抑制剂与预期的一样,贴合到位于SARS-CoV-2 Mpro表面的靶结合位点上。出乎意料的是,他们还发现钙蛋白酶XII抑制剂采用了一种独特的构型---称为“倒置的结合姿势(inverted binding pose)”,以紧密地贴合在Mpro的活性结合位点上。(紧密贴合优化了这种抑制剂与靶病毒蛋白之间的相互作用,降低了协助SARS-CoV-2增殖的Mpro的活性)。 Chen博士说,“我们的研究结果为我们在未来如何设计更好的抑制剂来靶向这种关键病毒蛋白提供了有用的结构信息。” Chen博士说,除了同时靶向病毒蛋白酶Mpro和人类组织蛋白酶L提高效力(以较低的剂量获得理想的药物效果)外,双重抑制剂的另一个好处是它们有潜力抑制耐药性。 SARS-CoV-2会发生突变,这可能会改变它的靶基因序列。这些病毒突变会欺骗人体细胞,让这种病毒附着在细胞表面膜上并导入它的遗传物质到细胞中,并能改变病毒蛋白的形状以及它们与细胞内其他分子(包括抑制剂)的相互作用方式。 当SARS-CoV-2发生突变以便继续增殖时,它可能会对某种抑制剂产生抵抗性,从而降低这种化合物的有效性。换句话说,如果这种病毒的靶基因序列(锁)发生变化,那么钥匙(抑制剂)就不再适合那把特定的锁。但是假设同一把钥匙可以打开两把锁,以帮助阻止这种病毒感染;在这种情况下,这两把锁是Mpro(病毒靶蛋白)和组织蛋白酶 L(人类靶蛋白)。 Chen博士说,“这种病毒很难同时改变两把锁(两个药物靶标)。因此,双重抑制剂使得抗病毒药物耐药性更难形成,这是因为即便这个病毒靶蛋白发生变化,这种类型的化合物对没有发生变化的人类宿主蛋白仍然有效。” 这些研究人员继续对现有的抗病毒候选药物进行微调,以改善它们的稳定性和性能,并希望将他们所学到的知识应用于帮助设计新的COVID-19药物。他们的下一步研究工作将包括解决钙蛋白酶抑制剂如何在化学和结构上与组织蛋白酶L相互作用。