我们正处于人工智能革命的开端,这场革命将重新定义人类的生活和工作方式。特别是,深度神经网络 (DNN) 彻底改变了人工智能领域,并随着基础模型和生成式人工智能的出现而日益受到重视。但在传统数字计算架构上运行这些模型限制了它们可实现的性能和能源效率。专门用于人工智能推理的硬件开发已经取得了进展,但其中许多架构在物理上分割了内存和处理单元。这意味着人工智能模型通常存储在离散的内存位置,计算任务需要在内存和处理单元之间不断地整理数据。此过程会减慢计算速度并限制可实现的最大能源效率。
IBM 研究中心一直在研究重塑人工智能计算方式的方法。模拟内存计算,或者简称模拟人工智能,是一种很有前途的方法,可以借用神经网络在生物大脑中运行的关键特征来应对这一挑战。在我们的大脑以及许多其他动物的大脑中,突触的强度(或称“权重”)决定了神经元之间的通信。对于模拟人工智能系统,研究人员将这些突触权重本地存储在纳米级电阻存储设备的电导值中,例如相变存储器(PCM) 并通过利用电路定律并减少在内存和处理器之间不断发送数据的需要来执行乘法累加 (MAC) 操作,这是 DNN 中的主要计算操作。对于模拟人工智能处理,IBM表示需要克服两个关键挑战:这些存储器阵列需要以与现有数字系统相当的精度进行计算,并且它们需要能够与数字计算单元以及数字通信结构无缝连接。
近期,IBM 推出了一款用于实现神经网络的模拟内存 芯片。该器件将权重作为模拟电平存储在相变存储器中作为电导,并实现模拟乘法累加计算。该芯片是在 IBM 的 Albany NanoTech Complex 中制造的,由 64 个模拟内存计算核心(或块)组成,每个核心包含 256×256 的突触单元格交叉阵列。使用该芯片,我们对模拟内存计算的计算精度进行了最全面的研究,并在CIFAR-10图像数据集上证明了 92.81% 的准确率,是目前报道的使用类似技术的芯片中精度最高的。8位输入输出矩阵向量乘法密度为400Gop/s/mm,峰值达到63Top/s和9.76Top/W,功耗比之前基于电阻式存储器的多核内存计算芯片高出 15 倍以上,同时实现了可比的能源效率。
该研究成果以题名“A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference”发表在Nature Electronics上。
参考信息链接:https://caifuhao.eastmoney.com/news/20230812113147087316760
https://www.nature.com/articles/s41928-023-01010-1
https://xueqiu.com/9919963656/149699780