《[青岛海洋科学与技术国家实验室] 》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: 马丽丽
  • 发布时间:2016-11-27
  • 11月23日,海洋国家实验室组织召开了“问海计划”项目实施工作会。海洋国家实验副主任宋金明、相关部门负责人,“问海计划”项目承担单位课题负责人及团队骨干参加会议。

    “问海计划”作为深化科研创新管理体制改革、探索科研项目管理创新模式的尝试,以山东省自然科学基金专项的形式依托海洋国家实验室进行实施。前期,“问海计划”项目所有申报项目的方案经专家评审,并经海洋国家实验室主任委员会终审确定后,海洋国家实验室对评优的项目给予资助,山东省科技厅对资助项目进行公示。

    宋金明强调,“问海计划”的实施要紧密围绕“透明海洋”国家重大战略任务,通过对承担单位初期成果的考核与筛选,后期对部分成果优异的单位进行大力度资金支持,推进研发设备的实际应用,大幅提升我国海洋监测探测装备的研发水平,加快我国海洋装备国产化进程。

    本次会议围绕“问海计划”的重大战略任务、项目实施方案、任务书的填写以及经费管理等方面进行了详细布署,同时对各承担单位提出相关的项目管理要求,如中期审查、样机海事、人员配备和经费管理等。与会人员就承担单位在项目实施过程中遇到的问题等进行了深入交流,为“问海计划”项目的顺利实施奠定了良好基础。

相关报告
  • 《青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室新技术获批美国专利》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-05-27
    • 日前,由青岛海洋科学与技术试点国家实验室海洋矿产资源评价与探测技术功能实验室李彦龙副研究员、吴能友研究员、陈强正高级工程师、胡高伟研究员等联合申报的国际专利《System and method for exploiting deepwater shallow low-abundance unconventional natural gas by artificial enrichment(深水浅层低丰度非常规天然气人工富集开采系统与方法)》获得美国国家知识产权局批复,标志着该团队在海洋天然气水合物立体低成本开发方法领域取得阶段性进展。 海洋天然气水合物分布广泛、资源潜力巨大,但在特定空间的资源丰度低,且横向连续性差、纵向多类型叠置,压力系统不统一,依托深水油气开发技术思路的开采方法难以在短期内显著降低天然气水合物开发成本。为此,海洋矿产资源评价与探测技术功能实验室天然气水合物试采团队提出将海底天然气水合物藏、水合物藏下伏伴生气及与其处于同一压力系统的浅层气(不包括与水合物藏处于不同压力系统的深部常规天然气)统筹考虑,将其作为同一类低丰度非常规天然气藏予以立体开发的思路。 基于上述立体开发思路,研究团队提出充分利用天然气水合物相较于同一压力系统下游离气能源密度高且能够稳定存在的特点,通过在地层中建立有效的沟通通道,通过原位改性、二次人工诱导成矿、抽吸富化、快速提取等步骤,实现深海浅层低丰度非常规天然气的开发。该专利提出了实现上述开发方案的基本技术原理、二次诱导成矿装置、施工步骤及备选方案,是一种完全不同于深水常规油气开发思路的开采方法。 据悉,海洋矿产资源评价与探测技术功能实验室天然气水合物试采团队近年来针对多类型天然气水合物立体开发方法开展了前瞻性部署,部分核心技术获得了系列国家专利和国际专利,并依托团队在实验模拟、数值模拟方面的优势,开展了初步可行性研究。下一步,团队将紧密围绕我国周边海域天然气水合物藏特征,并结合技术成熟度和工程化可行性,优选最佳新型开采方法,展开集中攻关,以期为我国海域天然气水合物开发提供技术参考。
  • 《青岛海洋科学与技术试点国家实验室于际民团队在碳循环研究取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-03-20
    • 作为巨大的碳储库,海洋对不同时间尺度的大气二氧化碳(CO2)变化起着至关重要的作用。尽管冰芯记录揭示了过去大气CO2多时间尺度波动,但是这些波动具体是受哪些海洋过程调控呢?这一问题至今尚未解决。2022年3月17日Nature Geoscience杂志以Article的形式在线发表了青岛海洋科学与技术试点国家实验室鳌山人才卓越科学家于际民研究员团队的最新研究成果“Millennial andcentennial CO2 release from the Southern Ocean during the lastdeglaciation”(Yu et al., 2022,Nature Geoscience, DOI: 10.1038/s41561-022-00910-9), 该研究成果为回答这一前沿科学问题提供了重要线索。 由于海-气CO2交换发生在海洋表层,传统上大多数科学家利用生长在表层海洋的生物载体(如浮游有孔虫的钙质壳体和硅藻的蛋白石骨骼)来开发不同的指标用以研究碳循环。然而,依据这些指标所获得的数据信号存在诸多时、空差异,影响推测碳循环机制。例如,大多数有孔虫类和硅藻主要生长在春、夏两季,即便基于它们的研究表明某海域向大气释放CO2,也不能断言该海域是大气的一个碳源,因为在春、夏两季释放的CO2可能会在其它季节被海洋重新吸收。 与表层海洋相比,海洋内部水体(深海)可综合全年的海-气CO2交换信号,基本不受季节变化的影响。因此,在一定程度上,海洋内部水体可更好地反映大范围海域对大气CO2的影响。不过,海洋内部碳循环也受多个过程调节,并非所有过程都可直接反映海-气CO2交换信号。譬如,生物降解作用会增加深海中的碳含量,但是仅有一部分碳含量的增加与海-气CO2交换直接相关(即,碳从大气封存到了深海),而其它部分的碳含量增加则是碳在海洋内部的空间转移(比如,碳从浅海被转移到深海);显然,若为探索大气CO2变化机制,海-气交换部分的CO2是我们期望获得的信息。那么,如何从海洋内部海水数据提取有效的海-气CO2交换信号呢?这是碳循环研究中一个关键而极具挑战性的问题。 针对这一前沿科学问题,于际民研究员领衔的研究团队开发了一种全新的、可有效反映海-气CO2交换的示踪指标—DICas (详见Yu et al., 2019, Nature Communications)。利用这一新型示踪指标,并结合数值模拟,该研究团队详细揭示了末次冰消期海洋内部与大气之间的CO2交换过程。结果发现,在末次冰消期早期,海洋内部水体通过南大洋向大气释放了CO2。更有意义的是,该研究提出了一种新的机制来解释大约1.46万年前Bølling时期所呈现的百年尺度CO2快速上升:南极中层水的骤然扩张。与其它水体相比,南极中层水对大气CO2的封存效率较低,因此该水体的扩张会降低海洋对大气CO2的封存能力,从而导致大气CO2上升。这表明,海洋内部水体的大气CO2封存能力与洋流循环密切相关。 海洋碳循环是一个复杂、重要的研究课题。为更准确的预测未来大气CO2变化,我们亟需深入理解全球碳循环、营养物质循环及其与温盐环流的耦合机制,而研究地球的气候历史是提升对碳循环-气候体系机制性理解的一个重要渠道。 上述这项工作得到了国家自然科学基金委和澳大利亚研究理事会的经费支持,由来自青岛海洋科学与技术试点国家实验室、澳大利亚国立大学、伍兹霍尔研究所、中国科学院、新南威尔士大学、康涅狄格大学等单位的科学家组成的国际团队合作完成。